RESUMO
Type III polyketide synthases (PKSs) found across Streptomyces species are primarily known for synthesis of a vast repertoire of clinically and industrially relevant secondary metabolites. However, our understanding of the functional relevance of these bioactive metabolites in Streptomyces physiology is still limited. Recently, a role of type III PKS harboring gene cluster in producing alternate electron carrier, polyketide quinone (PkQ) was established in a related member of the Actinobacteria, Mycobacteria, highlighting the critical role these secondary metabolites play in primary cellular metabolism of the producer organism. Here, we report the developmental stage-specific transcriptional regulation of homologous type III PKS containing gene cluster in freshwater Streptomyces sp. strain MNU77. Gene expression analysis revealed the type III PKS gene cluster to be stringently regulated, with significant upregulation observed during the dormant sporulation stage of Streptomyces sp. MNU77. In contrast, the expression levels of only known electron carrier, menaquinone biosynthetic genes were interestingly found to be downregulated. Our liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of a metabolite extract from the Streptomyces sp. MNU77 spores also showed 10 times more metabolic abundance of PkQs than menaquinones. Furthermore, through heterologous complementation studies, we demonstrate that Streptomyces sp. MNU77 type III PKS rescues a respiratory defect of the Mycobacterium smegmatis type III PKS deletion mutant. Together, our studies reveal that freshwater Streptomyces sp. MNU77 robustly produces novel PkQs during the sporulation stage, suggesting utilization of PkQs as alternate electron carriers across Actinobacteria during dormant hypoxic conditions. IMPORTANCE The complex developmental life cycle of Streptomyces sp. mandates efficient cellular respiratory reconfiguration for a smooth transition from aerated nutrient-rich vegetative hyphal growth to the hypoxic-dormant sporulation stage. Polyketide quinones (PkQs) have recently been identified as a class of alternate electron carriers from a related member of the Actinobacteria, Mycobacteria, that facilitates maintenance of membrane potential in oxygen-deficient niches. Our studies with the newly identified freshwater Streptomyces sp. strain MNU77 show conditional transcriptional upregulation and metabolic abundance of PkQs in the spore state of the Streptomyces life cycle. In parallel, the levels of menaquinones, the only known Streptomyces electron carrier, were downregulated, suggesting deployment of PkQs as universal electron carriers in low-oxygen, unfavorable conditions across the Actinobacteria family.
Assuntos
Policetídeos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Vitamina K 2/metabolismo , Policetídeos/metabolismo , Quinonas/metabolismoRESUMO
Mycobacterium tuberculosis (Mtb) endures a combination of metal scarcity and toxicity throughout the human infection cycle, contributing to complex clinical manifestations. Pathogens counteract this paradoxical dysmetallostasis by producing specialized metal trafficking systems. Capture of extracellular metal by siderophores is a widely accepted mode of iron acquisition, and Mtb iron-chelating siderophores, mycobactin, have been known since 1965. Currently, it is not known whether Mtb produces zinc scavenging molecules. Here, we characterize low-molecular-weight zinc-binding compounds secreted and imported by Mtb for zinc acquisition. These molecules, termed kupyaphores, are produced by a 10.8 kbp biosynthetic cluster and consists of a dipeptide core of ornithine and phenylalaninol, where amino groups are acylated with isonitrile-containing fatty acyl chains. Kupyaphores are stringently regulated and support Mtb survival under both nutritional deprivation and intoxication conditions. A kupyaphore-deficient Mtb strain is unable to mobilize sufficient zinc and shows reduced fitness upon infection. We observed early induction of kupyaphores in Mtb-infected mice lungs after infection, and these metabolites disappeared after 2 wk. Furthermore, we identify an Mtb-encoded isonitrile hydratase, which can possibly mediate intracellular zinc release through covalent modification of the isonitrile group of kupyaphores. Mtb clinical strains also produce kupyaphores during early passages. Our study thus uncovers a previously unknown zinc acquisition strategy of Mtb that could modulate host-pathogen interactions and disease outcome.