Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
PLoS One ; 19(2): e0296859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416719

RESUMO

To assess the possible impact of climatic variation on microbial community composition in organic winemaking, we employed a metabarcoding approach to scrutinize the microbiome in a commercial, organic, Pinot noir wine production system that utilizes autochthonous fermentation. We assessed microbial composition across two vintages (2018 and 2021) using biological replicates co-located at the same winery. Microbial dynamics were monitored over four important fermentation time points and correlated with contemporaneous climate data. Bacterial (RANOSIM = 0.4743, p = 0.0001) and fungal (RANOSIM = 0.4738, p = 0.0001) compositions were different in both vintages. For bacteria, Lactococcus dominated the diversity associated with the 2018 vintage, while Tatumella dominated the 2021 vintage. For fungal populations, while Saccharomyces were abundant in both vintages, key differences included Starmerella, copious in the 2018 vintage; and Metschnikowia, substantive in the 2021 vintage. Ordination plots correlated the climatic variables with microbial population differences, indicating temperature as a particularly important influence; humidity values also differed significantly between these vintages. Our data illustrates how climatic conditions may influence microbial diversity during winemaking, and further highlights the effect climate change could have on wine production.


Assuntos
Microbiota , Saccharomyces , Vitis , Vinho , Vinho/análise , Bactérias/genética , Fermentação , Vitis/microbiologia
2.
Curr Res Food Sci ; 8: 100694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420346

RESUMO

Kombucha consumption has grown rapidly worldwide in the last decade, with production at both small- and large scales. The complex fermentation process involves both bacterial and yeast species, but little is known regarding the progression of microbial development during production. We explored the microbial diversity of multiple batches across two kombucha types, i. e commercial scale versus laboratory-made (hereafter "home") kombucha brew using metabarcoding to characterize both fungal and bacterial communities. We found the microbial community of the commercial kombucha brew to be more complex than that of the home brew. Furthermore, PERMANOVA uncovered significant compositional differences between the bacterial (F = 2.68, R2 = 0.23, p = 00.001) and fungal (F = 3.18, R2 = 0.26, p = 00.006) communities between batches. For the home brew, both alpha and beta diversity analyses revealed no significant differences between all batches and replicates. When the microbial diversity of the home and commercial kombucha types were directly compared, the former had higher proportions of Ammoniphilus and Komagataeibacter. The commercial kombucha on the other hand were high in Anoxybacillus, Methylobacterium and Sphingomonas. For the fungal communities, the most dominant fungal genera detected in both kombucha types were similar. Linear model revealed significant correlations between some microorganisms and the sugars and organic acids assayed in this study. For example, rising glucose levels correlated with an increase in the relative abundance of Komagataeibacter (F = 7.115, Adj. R2 = 0.44, p = 00.0003). We believe these results contribute towards achieving a better control of the kombucha fermentation process and may assist in targeted product diversification.

3.
Microbiol Resour Announc ; 13(1): e0081523, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38095867

RESUMO

Thermococcus waiotapuensis WT1T is a thermophilic, peptide, and amino acid-fermenting archaeon from the order Thermococcales. It was isolated from Waiotapu, Aotearoa-New Zealand, and has a genome size of 1.80 Mbp. The genome contains 2,000 total genes, of which 1,913 encode proteins and 46 encode tRNA.

4.
Heredity (Edinb) ; 132(1): 18-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903919

RESUMO

Local adaptation plays a key role in the successful establishment of pest populations in new environments by enabling them to tolerate novel biotic and abiotic conditions experienced outside their native range. However, the genomic underpinnings of such adaptive responses remain unclear, especially for agriculturally important pests. We investigated population genomic signatures in the tropical/subtropical Queensland fruit fly, Bactrocera tryoni, which has an expanded range encompassing temperate and arid zones in Australia, and tropical zones in the Pacific Islands. Using reduced representation sequencing data from 28 populations, we detected allele frequency shifts associated with the native/invasive status of populations and identified environmental factors that have likely driven population differentiation. We also determined that precipitation, temperature, and geographic variables explain allelic shifts across the distribution range of B. tryoni. We found spatial heterogeneity in signatures of local adaptation across various climatic conditions in invaded areas. Specifically, disjunct invasive populations in the tropical Pacific Islands and arid zones of Australia were characterised by multiple significantly differentiated single nucleotide polymorphisms (SNPs), some of which were associated with genes with well-understood function in environmental stress (e.g., heat and desiccation) response. However, invasive populations in southeast Australian temperate zones showed higher gene flow with the native range and lacked a strong local adaptive signal. These results suggest that population connectivity with the native range has differentially affected local adaptive patterns in different invasive populations. Overall, our findings provide insights into the evolutionary underpinnings of invasion success of an important horticultural pest in climatically distinct environments.


Assuntos
Tephritidae , Animais , Tephritidae/genética , Austrália , Genoma , Genômica
5.
Genome Biol Evol ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38109935

RESUMO

Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community.


Assuntos
Genômica , Espécies Introduzidas , Humanos , Clima
6.
ISME J ; 17(11): 1798-1807, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660231

RESUMO

Microbes can be an important source of phenotypic plasticity in insects. Insect physiology, behaviour, and ecology are influenced by individual variation in the microbial communities held within the insect gut, reproductive organs, bacteriome, and other tissues. It is becoming increasingly clear how important the insect microbiome is for insect fitness, expansion into novel ecological niches, and novel environments. These investigations have garnered heightened interest recently, yet a comprehensive understanding of how intraspecific variation in the assembly and function of these insect-associated microbial communities can shape the plasticity of insects is still lacking. Most research focuses on the core microbiome associated with a species of interest and ignores intraspecific variation. We argue that microbiome variation among insects can be an important driver of evolution, and we provide examples showing how such variation can influence fitness and health of insects, insect invasions, their persistence in new environments, and their responses to global environmental changes. A and B are two stages of an individual or a population of the same species. The drivers lead to a shift in the insect associated microbial community, which has consequences for the host. The complex interplay of those consequences affects insect adaptation and evolution and influences insect population resilience or invasion.


Assuntos
Bactérias , Microbiota , Animais , Bactérias/genética , Microbiota/genética , Insetos , Ecologia
7.
iScience ; 26(9): 107462, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636074

RESUMO

One Biosecurity is an interdisciplinary approach to policy and research that builds on the interconnections between human, animal, plant, and ecosystem health to effectively prevent and mitigate the impacts of invasive alien species. To support this approach requires that key cross-sectoral research innovations be identified and prioritized. Following an interdisciplinary horizon scan for emerging research that underpins One Biosecurity, four major interlinked advances were identified: implementation of new surveillance technologies adopting state-of-the-art sensors connected to the Internet of Things, deployable handheld molecular and genomic tracing tools, the incorporation of wellbeing and diverse human values into biosecurity decision-making, and sophisticated socio-environmental models and data capture. The relevance and applicability of these innovations to address threats from pathogens, pests, and weeds in both terrestrial and aquatic ecosystems emphasize the opportunity to build critical mass around interdisciplinary teams at a global scale that can rapidly advance science solutions targeting biosecurity threats.

8.
Mol Ecol Resour ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647021

RESUMO

Invasive species threaten native biota, putting fragile ecosystems at risk and having a large-scale impact on primary industries. Growing trade networks and the popularity of personal travel make incursions a more frequent risk, one only compounded by global climate change. With increasing publication of whole-genome sequences lies an opportunity for cross-species assessment of invasive potential. However, the degree to which published sequences are accompanied by satisfactory spatiotemporal data is unclear. We assessed the metadata associated with 199 whole-genome assemblies of 89 invasive terrestrial invertebrate species and found that only 38% of these were derived from field-collected samples. Seventy-six assemblies (38%) reported an 'undescribed' sample origin and, while further examination of associated literature closed this gap to 23.6%, an absence of spatial data remained for 47 of the total assemblies. Of the 76 assemblies that were ultimately determined to be field-collected, associated metadata relevant for invasion studies was predominantly lacking: only 35% (27 assemblies) provided granular location data, and 33% (n = 25) lacked sufficient collection date information. Our results support recent calls for standardized metadata in genome sequencing data submissions, highlighting the impact of missing metadata on current research in invasion biology (and likely other fields). Notably, large-scale consortia tended to provide the most complete metadata submissions in our analysis-such cross-institutional collaborations can foster a culture of increased adherence to improved metadata submission standards and a standard of metadata stewardship that enables reuse of genomes in invasion science.

9.
Heliyon ; 9(5): e15658, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206017

RESUMO

The role of microbial diversity in influencing the organoleptic properties of wine and other fermented products is well est ablished, and understanding microbial dynamics within fermentation processes can be critical for quality assurance and product innovation. This is especially true for winemakers using spontaneous fermentation techniques, where environmental factors may play an important role in consistency of product. Here, we use a metabarcoding approach to investigate the influence of two environmental systems used by an organic winemaker to produce wines; vineyard (outdoors) and winery (indoors) to the bacterial and fungal communities throughout the duration of a spontaneous fermentation of the same batch of Pinot Noir grapes. Bacterial (RANOSIM = 0.5814, p = 0.0001) and fungal (RANOSIM = 0.603, p = 0.0001) diversity differed significantly across the fermentation stages in both systems. Members of the Hyphomicrobium genus were found in winemaking for the first time, as a bacterial genus that can survive alcoholic fermentation. Our results also indicate that Torulaspora delbrueckii and Fructobacillus species might be sensitive to environmental systems. These results clearly reflect the substantial influence that environmental conditions exert on microbial populations at every point in the process of transforming grape juice to wine via fermentation, and offer new insights into the challenges and opportunities for wine production in an ever-changing global climate.

10.
J Phycol ; 59(2): 342-355, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680562

RESUMO

The quadriflagellate genus Chlainomonas frequently dominates red snow globally. It is unusual in several respects, with two separated pairs of flagella, apparent cell division via extrusion of cytoplasmic threads, and being nested phylogenetically within the biflagellate genus Chloromonas. Here, we showed that the austral species Chloromonas (Cr.) rubroleosa, originally described from Antarctic red snow, is a close biflagellate relative of Chlainomonas, challenging the monophyly of Chlainomonas as currently conceived. Sequences of the 18S rRNA gene robustly linked Cr. rubroleosa with near-identical environmental sequences from Antarctic red snow and Chlainomonas from North America, Japan, and Europe. Furthermore, the 18S rRNA and rbcL gene sequences of Cr. rubroleosa were almost identical to New Zealand and North American collections of Chlainomonas. Cr. rubroleosa and New Zealand Chlainomonas are separated by only a single-base substitution across the ITS1-5.8S-ITS2 rRNA loci (and according to ITS2, the North American collection is the next closest relative). This again raises the possibility that Chlainomonas is a life-cycle stage of vegetatively biflagellate organisms, although this remains confounded by the scarcity of biflagellates in field populations, the apparent cell division by quadriflagellates, and the absence of Chlainomonas-type cells in cultures of Cr. rubroleosa. The latter species is broadly similar to Chlainomonas, being poor at swimming, with similar pigment, chloroplast arrangement and ultrastructure, and is relatively large. Increased size is a feature of the wider clade of "Group D" snow algae. A synthesis of field and laboratory investigations may be needed to unravel the life cycle and correct the systematics of this group.


Assuntos
Clorofíceas , Clorofíceas/genética , Filogenia , Cloroplastos , Europa (Continente) , RNA Ribossômico 18S/genética
11.
Environ Microbiol ; 25(3): 766-771, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36562630

RESUMO

Flowers are an important niche for microbes, and microbes in turn influence plant fitness. As flower morphology and biology change rapidly over time, dynamic niches for microbes are formed and lost. Floral physiology at each life stage can therefore influence arrival, persistence and loss of microbial species; however, this remains little understood despite its potential consequences for host reproductive success. Through internal transcribed spacer 1 (ITS1) community profiling, we characterized the effect of transitioning through five floral stages of manuka (Leptospermum scoparium), from immature bud to spent flower, and subsequent allocation to seed, on the flower-inhabiting fungal community. We found nectar-consuming yeasts from Aureobasidium and Vishniacozyma genera and functionally diverse filamentous fungi from the Cladosporium genus dominated the anthosphere. The candidate core microbiota persisted across this dynamic niche despite high microbial turnover, as observed in shifts in community composition and diversity as flowers matured and senesced. The results demonstrated that floral stages are strong drivers of anthosphere fungal community assembly and dynamics. This study represents the first detailed exploration of fungi through floral development, building on fundamental knowledge in microbial ecology of healthy flowers.


Assuntos
Microbiota , Micobioma , Leptospermum , Flores/microbiologia , Néctar de Plantas , Polinização
12.
Mol Ecol ; 32(1): 138-151, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261398

RESUMO

Invasive species are increasingly threatening ecosystems and agriculture by rapidly expanding their range and adapting to environmental and human-imposed selective pressures. The genomic mechanisms that underlie such rapid changes remain unclear, especially for agriculturally important pests. Here, we used genome-wide polymorphisms derived from native, invasive, and intercepted samples and populations of the brown marmorated stink bug (BMSB), Halyomorpha halys, to gain insights into population genomics processes that have promoted the successful global invasion of this polyphagous pest. Our analysis demonstrated that BMSB exhibits spatial structure but admixture rates are high among introduced populations, resulting in similar levels of genomic diversity across native and introduced populations. These spatial genomic patterns suggest a complex invasion scenario, potentially with multiple bridgehead events, posing a challenge for accurately assigning BMSB incursions to their source using reduced-representation genomic data. By associating allele frequencies with the invasion status of BMSB populations, we found significantly differentiated single nucleotide polymorphisms (SNPs) located in close proximity to genes for insecticide resistance and olfaction. Comparing variations in allele frequencies among populations for outlier SNPs suggests that BMSB invasion success has probably evolved from standing genetic variation. In addition to being a major nuisance of households, BMSB has caused significant economic losses to agriculture in recent years and continues to expand its range. Despite no record of BMSB insecticide resistance to date, our results show high capacity for potential evolution of such traits, highlighting the need for future sustainable and targeted management strategies.


Assuntos
Ecossistema , Genética Populacional , Heterópteros , Animais , Agricultura , Heterópteros/genética , Resistência a Inseticidas
13.
Mol Ecol Resour ; 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345645

RESUMO

Despite recent advances in high-throughput DNA sequencing technologies, a lack of locally relevant DNA reference databases limits the potential for DNA-based monitoring of biodiversity for conservation and biosecurity applications. Museums and national collections represent a compelling source of authoritatively identified genetic material for DNA database development, yet obtaining DNA barcodes from long-stored specimens may be difficult due to sample degradation. Here we demonstrate a sensitive and efficient laboratory and bioinformatic process for generating DNA barcodes from hundreds of invertebrate specimens simultaneously via the Illumina MiSeq system. Using this process, we recovered full-length (334) or partial (105) COI barcodes from 439 of 450 (98%) national collection-held invertebrate specimens. This included full-length barcodes from 146 specimens which produced low-yield DNA and no visible PCR bands, and which produced as little as a single sequence per specimen, demonstrating high sensitivity of the process. In many cases, the identity of the most abundant sequences per specimen were not the correct barcodes, necessitating the development of a taxonomy-informed process for identifying correct sequences among the sequencing output. The recovery of only partial barcodes for some taxa indicates a need to refine certain PCR primers. Nonetheless, our approach represents a highly sensitive, accurate and efficient method for targeted reference database generation, providing a foundation for DNA-based assessments and monitoring of biodiversity.

14.
Elife ; 112022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300797

RESUMO

Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus (formerly Mimulus) aurantiacus, exhibited abundance patterns indicative of alternative stable states that emerge through domination by either bacteria or yeasts within individual flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent with the existence of these alternative stable states. In laboratory experiments, Acinetobacter nectaris, the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii, the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris-induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization.


Assuntos
Néctar de Plantas , Polinização , Animais , Flores , Aves , Plantas , Leveduras , Bactérias
15.
Environ Microbiol ; 24(12): 5654-5665, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102191

RESUMO

As cities expand, understanding how urbanization affects biodiversity is a key ecological goal. Yet, little is known about how host-associated microbial diversity responds to urbanization. We asked whether communities of microbial (bacterial and fungal) in floral nectar and sugar-water feeders and vectored by nectar-feeding birds-thus forming a metacommunity-differed in composition and diversity between suburban and rural gardens. Compared to rural birds, we found that suburban birds vectored different and more diverse bacterial communities. These differences were not detected in the nectar of common plant species, suggesting that nectar filters microbial taxa and results in metacommunity convergence. However, when considering all the nectar sources present, suburban beta diversity was elevated compared to rural beta diversity due to turnover of bacterial taxa across a plant species and sugar-water feeders. While fungal metacommunity composition and beta diversity in nectar were similar between suburban and rural sites, alpha diversity was elevated in suburban sites, which mirrored the trend of increased fungal alpha diversity on birds. These results emphasize the interdependence of host, vector, and microbial diversity and demonstrate that human decisions can shape nectar microbial diversity in contrasting ways for bacteria and fungi.


Assuntos
Jardins , Néctar de Plantas , Animais , Humanos , Aves , Biodiversidade , Bactérias/genética , Plantas , Açúcares , Água
16.
Glob Chang Biol ; 27(23): 6217-6231, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34585498

RESUMO

Climate warming may be exacerbated if rising temperatures stimulate losses of soil carbon to the atmosphere. The direction and magnitude of this carbon-climate feedback are uncertain, largely due to lack of knowledge of the thermal adaptation of the physiology and composition of soil microbial communities. Here, we applied the macromolecular rate theory (MMRT) to describe the temperature response of the microbial decomposition of soil organic matter (SOM) in a natural long-term warming experiment in a geothermally active area in New Zealand. Our objective was to test whether microbial communities adapt to long-term warming with a shift in their composition and their temperature response that are consistent with evolutionary theory of trade-offs between enzyme structure and function. We characterized the microbial community composition (using metabarcoding) and the temperature response of microbial decomposition of SOM (using MMRT) of soils sampled along transects of increasing distance from a geothermally active zone comprising two biomes (a shrubland and a grassland) and sampled at two depths (0-50 and 50-100 mm), such that ambient soil temperature and soil carbon concentration varied widely and independently. We found that the different environments were hosting microbial communities with distinct compositions, with thermophile and thermotolerant genera increasing in relative abundance with increasing ambient temperature. However, the ambient temperature had no detectable influence on the MMRT parameters or the relative temperature sensitivity of decomposition (Q10 ). MMRT parameters were, however, strongly correlated with soil carbon concentration and carbon:nitrogen ratio. Our findings suggest that, while long-term warming selects for warm-adapted taxa, substrate quality and quantity exert a stronger influence than temperature in selecting for distinct thermal traits. The results have major implications for our understanding of the role of soil microbial processes in the long-term effects of climate warming on soil carbon dynamics and will help increase confidence in carbon-climate feedback projections.


Assuntos
Microbiota , Solo , Carbono , Microbiologia do Solo , Temperatura
17.
Anim Microbiome ; 3(1): 48, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238378

RESUMO

BACKGROUND: Captive rearing is often critical for animals that are vulnerable to extinction in the wild. However, few studies have investigated the extent to which captivity impacts hosts and their gut microbiota, despite mounting evidence indicating that host health is affected by gut microbes. We assessed the influence of captivity on the gut microbiome of the Brown Kiwi (Apteryx mantelli), a flightless bird endemic to New Zealand. We collected wild (n = 68) and captive (n = 38) kiwi feces at seven sites on the north island of New Zealand. RESULTS: Using bacterial 16 S rRNA and fungal ITS gene profiling, we found that captivity was a significant predictor of the kiwi gut bacterial and fungal communities. Captive samples had lower microbial diversity and different composition when compared to wild samples. History of coccidiosis, a gut parasite primarily affecting captive kiwi, showed a marginally significant effect. CONCLUSIONS: Our findings demonstrate captivity's potential to shape the Brown Kiwi gut microbiome, that warrant further investigation to elucidate the effects of these differences on health.

18.
Nat Ecol Evol ; 3(4): 708, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858593

RESUMO

The original paper was published without unique DOIs for GBIF occurrence downloads. These have now been inserted as references 70-76, and the error has been corrected in the PDF and HTML versions of the article.

19.
Nat Ecol Evol ; 2(12): 1889-1896, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397301

RESUMO

A foundational paradigm in biological and Earth sciences is that our planet is divided into distinct ecoregions and biomes demarking unique assemblages of species. This notion has profoundly influenced scientific research and environmental policy. Given recent advances in technology and data availability, however, we are now poised to ask whether ecoregions meaningfully delimit biological communities. Using over 200 million observations of plants, animals and fungi we show compelling evidence that ecoregions delineate terrestrial biodiversity patterns. We achieve this by testing two competing hypotheses: the sharp-transition hypothesis, positing that ecoregion borders divide differentiated biotic communities; and the gradual-transition hypothesis, proposing instead that species turnover is continuous and largely independent of ecoregion borders. We find strong support for the sharp-transition hypothesis across all taxa, although adherence to ecoregion boundaries varies across taxa. Although plant and vertebrate species are tightly linked to sharp ecoregion boundaries, arthropods and fungi show weaker affiliations to this set of ecoregion borders. Our results highlight the essential value of ecological data for setting conservation priorities and reinforce the importance of protecting habitats across as many ecoregions as possible. Specifically, we conclude that ecoregion-based conservation planning can guide investments that simultaneously protect species-, community- and ecosystem-level biodiversity, key for securing Earth's life support systems into the future.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Biodiversidade , Ecologia
20.
PLoS One ; 13(10): e0205136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286152

RESUMO

Tephritid fruit flies are ranked as one of the most damaging groups of insect pests. Morphological identification of fruit flies is mainly performed on adults due to the lack of adequate identification keys for immature stages. The peach fruit fly, Bactrocera zonata (Saunders), infests some of the principal commercial fruits and vegetables. It is, therefore important to avert its global dispersal, particularly by accurately identifying this species at ports of entry. In this study, a TaqMan real-time polymerase chain reaction (PCR) was developed for the accurate identification and sensitive detection of the peach fruit fly. A novel set of primers and probe were designed to specifically identify the mitochondrial cytochrome oxidase I (COI) gene. All specimens of peach fruit fly (including various life stages) were detected, and no cross reactivity with other tested tephritids were observed. Since this assay performed equally well with crushed insects and purified DNA, we note added efficiency by eliminating DNA extraction step. Considering the speed, specificity as well as sensitivity of the assay, Taqman real-time PCR can be used as a swift and specific method for pest species at ports of entry.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de DNA/métodos , Tephritidae/classificação , Tephritidae/genética , Animais , Simulação por Computador , Reprodutibilidade dos Testes , Tephritidae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA