Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 34859-34879, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940603

RESUMO

MnOx-based materials have limited capacity and poor conductivity over various voltages, hampering their potential for energy storage applications. This work proposes a novel approach to address these challenges. A self-oriented multiple-electronic structure of a 1D-MnO2-nanorod/2D-Mn2O3-nanosphere composite was assembled on 2D-graphene oxide nanosheet/1D-carbon nanofiber (GO/CNF) hybrids. Aided by K+ ions, the MnO2 nanorods were partially converted to Mn2O3 nanospheres, while the GO nanosheets were combined with CNF through hydrogen bonds resulting in a unique double binary 1D-2D mixed morphology of MnO2/Mn2O3-GO/CNF hybrid, having a novel mechanism of multiple Mn ion redox reactions facilitated by the interconnected 3D network. The morphology of the MnO2 nanorods was controlled by regulating the potassium ion content through a rinsing strategy. Interestingly, pure MnO2 nanorods undergo air-annealing to form a mixture of nanorods and nanospheres (MnO2/Mn2O3) with a distinct morphology indicating pseudocapacitive surface redox reactions involving Mn2+, Mn3+, and Mn4+. In the presence of the GO/CNF framework, the charge storage properties of the MnO2/Mn2O3-GO/CNF composite electrode show dominant battery-type behavior because of the unique mesoporous structure with a crumpled morphology that provides relatively large voids and cavities with smaller diffusion paths to facilitate the accumulation/intercalation of charges at the inner electroactive sites for the diffusion-controlled process. The corresponding specific capacity of 800 C g-1 or 222.2 mAh g-1 at 1 A g-1 and remarkable cycling stability (95%) over 5000 cycles at 3 A g-1 were considerably higher than those of the reported electrodes of similar materials. Moreover, a hybrid supercapacitor device is assembled using MnO2/Mn2O3-GO/CNF as the positive electrode and activated carbon as the negative electrode, which exhibits a superior maximum energy density (∼25 Wh kg-1) and maximum power density (∼4.0 kW kg-1). Therefore, the as-synthesized composite highlights the development of highly active low-cost materials for next-generation energy storage applications.

2.
ACS Appl Mater Interfaces ; 15(17): 20925-20945, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067333

RESUMO

A comprehensive and comparative exploration research performed, aiming to elucidate the fundamental mechanisms of rare-earth (RE) metal-ion doping into Li4Ti5O12 (LTO), reveals the enhanced electrochemical performance of the nanocrystalline RE-LTO electrodes in high-power Li-ion batteries. Pristi ne Li4Ti5O12 (LTO) and rare-earth metal-doped Li4-x/3Ti5-2x/3LnxO12 (RE-LTO with RE = Dy, Ce, Nd, Sm, and Eu; x ≈ 0.1) nanocrystalline anode materials were synthesized using a simple mechanochemical method and subsequent calcination at 850 °C. The X-ray diffraction (XRD) patterns of pristine and RE-LTO samples exhibit predominant (111) orientation along with other characteristic peaks corresponding to cubic spinel lattice. No evidence of RE-doping-induced changes was seen in the crystal structure and phase. The average crystallite size for pristine and RE-LTO samples varies in the range of 50-40 nm, confirming the formation of nanoscale crystalline materials and revealing the good efficiency of the ball-milling-assisted process adopted to synthesize nanoscale particles. Raman spectroscopic analyses of the chemical bonding indicate and further validate the phase structural quality in addition to corroborating with XRD data for the cubic spinel structure formation. Transmission electron microscopy (TEM) reveals that both pristine and RE-LTO particles have a similar cubic shape, but RE-LTO particles are better interconnected, which provide a high specific surface area for enhanced Li+-ion storage. The detailed electrochemical characterization confirms that the RE-LTO electrodes constitute promising anode materials for high-power Li-ion batteries. The RE-LTO electrodes deliver better discharge capacities (in the range of 172-198 mAh g-1 at 1C rate) than virgin LTO (168 mAh g-1). Among them, Eu-LTO provides the best discharge capacity of 198 mAh g-1 at a 1C rate. When cycled at a high current rate of 50C, all RE-LTO electrodes show nearly 70% of their initial discharge capacities, resulting in higher rate capability than virgin LTO (63%). The results discussed in this work unfold the fundamental mechanisms of RE doping into LTO and demonstrate the enhanced electrochemical performance derived via chemical composition tailoring in RE-LTO compounds for application in high-power Li-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA