Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 110(1): e21871, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35150449

RESUMO

The hearing organ of Drosophila is present within the second segment of antennae. The hearing organ of Drosophila (Johnston's organ [JO]) shares much structural, developmental, and functional similarity with the vertebrate hearing organ (Organ of Corti). JO is evolving as a potential model system to examine the hearing-associated defects in vertebrates. In the vertebrates, aminoglycosides like gentamicin, kanamycin, and neomycin have been known to cause defects in the hearing organ. However, a complete mechanism of toxicity is not known. Taking the evolutionary conservation into account the current study aims to test various concentrations of aminoglycoside on the model organism, Drosophila melanogaster. The current study uses the oral route to check the toxicity of various aminoglycosides at different concentrations (50, 100, 150, 200, and 250 µg ml- 1 ). In Drosophila, many foreign particles enter the body through the gut via food. The aminoglycoside treated third instar larvae show defective crawling and sound avoidance behavior. The adult flies release lower amounts of acetylcholine esterase and higher amounts of reactive oxygen species than control untreated animals, accompanied by defective climbing and aggressive behavior. All these behavioral defects are further confirmed by the altered expression level of hearing genes such as nompC, inactive, nanchung, pyrexia. All the behavioral and genetic defects are reported as a readout of aminoglycoside toxicity.


Assuntos
Drosophila melanogaster , Drosophila , Aminoglicosídeos/toxicidade , Animais , Drosophila/genética , Drosophila melanogaster/genética , Audição/genética , Larva
2.
Environ Sci Pollut Res Int ; 27(26): 32899-32912, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32524398

RESUMO

Environmental cues like noise, pressure, and circadian rhythm can affect the hearing ability of human beings. Nevertheless, the complex physiology of the human being does not allow us to understand how these factors can affect hearing and hearing-related behaviors. Conversely, these effects can be easily checked using the hearing organ of Drosophila melanogaster, the Johnston organ. In the current study, the Drosophila was exposed to challenging environments like noise, low pressure, and altered circadian rhythm. The hearing organ of larvae, as well as adults, was analyzed for hearing-related defects. In the third instar larva, the cell deaths were detected in the antenna imaginal disc, the precursor of Johnston's organ. Elevated levels of reactive oxygen species and antioxidant enzymes were also detected in the adult antennae of environmentally challenged flies. The ultrastructure of the antennae suggests the presence of abundant mitochondria in the scolopidia of control. Fewer amounts of mitochondria are found in the environmentally challenged adult antennae. In adults, various hearing-related behaviors were analyzed as a readout of functionality of the hearing organ. Analysis of climbing, aggressive, and courtship behaviors suggests abnormal behavior in environmentally challenged flies than the control. The current study suggests that the environmental cues can alter hearing-related behaviors in Drosophila. The methods used in this study can be used to monitor the environmental pollution or to study the effect of alteration of noise, pressure, and circadian rhythm on hearing-related behaviors taking Drosophila melanogaster as a model organism. Graphical abstract.


Assuntos
Sinais (Psicologia) , Drosophila melanogaster , Animais , Drosophila , Audição , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA