Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plants (Basel) ; 12(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005757

RESUMO

Powdery mildew (PM), caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), significantly threatens global bread wheat production. Although the use of resistant cultivars is an effective strategy for managing PM, currently available wheat cultivars lack sufficient levels of resistance. To tackle this challenge, we conducted a comprehensive genome-wide association study (GWAS) using a diverse panel of 286 bread wheat genotypes. Over three consecutive years (2020-2021, 2021-2022, and 2022-2023), these genotypes were extensively evaluated for PM severity under field conditions following inoculation with virulent Bgt isolates. The panel was previously genotyped using the Illumina 90K Infinium iSelect assay to obtain genome-wide single-nucleotide polymorphism (SNP) marker coverage. By applying FarmCPU, a multilocus mixed model, we identified a total of 113 marker-trait associations (MTAs) located on chromosomes 1A, 1B, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6B, 7A, and 7B at a significance level of p ≤ 0.001. Notably, four novel MTAs on chromosome 6B were consistently detected in 2020-2021 and 2021-2022. Furthermore, within the confidence intervals of the identified SNPs, we identified 96 candidate genes belonging to different proteins including 12 disease resistance/host-pathogen interaction-related protein families. Among these, protein kinases, leucine-rich repeats, and zinc finger proteins were of particular interest due to their potential roles in PM resistance. These identified loci can serve as targets for breeding programs aimed at developing disease-resistant wheat cultivars.

2.
Front Plant Sci ; 13: 1035620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457538

RESUMO

The culms of solid-stemmed wheat cultivars are filled with "pith" - a parenchymatous tissue largely composed of soft, spongy, and compact parenchyma cells. Breeding solid-stemmed cultivars is the most effective way to decrease the detrimental impact of wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae) on wheat production. Although a major solid stem gene has been previously identified from durum wheat, it produces an intermediate level of stem solidness in common wheat which is insufficient to provide the required level of WSS resistance. The maximum resistance is achieved when stems are totally filled with pith. Thus, to identify a secondary source of solidness in common wheat, we developed three mapping populations from wheat cvs. Sadash, 'AAC Innova' and 'AAC Cameron', each crossed separately with P2711, a completely solid-stemmed hexaploid wheat breeding line. All populations were genotyped using either wheat 15K or 90K Infinium iSelect SNP Assay and high-density linkage maps were generated from individual populations along with consensus maps for chromosomes 3B and 3D from all populations. 'Sadash/P2711' and 'AAC Innova/P2711' populations were subjected to extensive phenotyping in ≥3 environments followed by quantitative trait loci (QTL) analyses using population-specific and consensus linkage maps. We identified two major solid stem QTLs in the distal regions of chromosome arms 3BL and 3DL in both populations in addition to several population-specific or common minor QTLs. Internode-specific QTL analyses detected both major QTLs of chromosomes 3B and 3D across internodes, from top to bottom of the stalk, but minor QTLs were largely detected in upper or middle internodes. Our results suggest that both major QTLs are sufficient to develop highly solid-stemmed cvs; however, the minor loci, which additively enhance the pith expression, can be coupled with major genes to achieve a complete solid stem phenotype in common wheat. Comparative and haplotype analyses showed that the 3B locus is homoeologous to 3D, the former being mapped to a 1.1 Mb genomic region. Major QTLs identified in this study can be incorporated in modern wheat cultivars to achieve maximum WSS resistance from high pith expression.

3.
Plants (Basel) ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807690

RESUMO

Some previous studies have assessed the predictive ability of genome-wide selection on stripe (yellow) rust resistance in wheat, but the effect of genotype by environment interaction (GEI) in prediction accuracies has not been well studied in diverse genetic backgrounds. Here, we compared the predictive ability of a model based on phenotypic data only (M1), the main effect of phenotype and molecular markers (M2), and a model that incorporated GEI (M3) using three cross-validations (CV1, CV2, and CV0) scenarios of interest to breeders in six spring wheat populations. Each population was evaluated at three to eight field nurseries and genotyped with either the DArTseq technology or the wheat 90K single nucleotide polymorphism arrays, of which a subset of 1,058- 23,795 polymorphic markers were used for the analyses. In the CV1 scenario, the mean prediction accuracies of the M1, M2, and M3 models across the six populations varied from -0.11 to -0.07, from 0.22 to 0.49, and from 0.19 to 0.48, respectively. Mean accuracies obtained using the M3 model in the CV1 scenario were significantly greater than the M2 model in two populations, the same in three populations, and smaller in one population. In both the CV2 and CV0 scenarios, the mean prediction accuracies of the three models varied from 0.53 to 0.84 and were not significantly different in all populations, except the Attila/CDC Go in the CV2, where the M3 model gave greater accuracy than both the M1 and M2 models. Overall, the M3 model increased prediction accuracies in some populations by up to 12.4% and decreased accuracy in others by up to 17.4%, demonstrating inconsistent results among genetic backgrounds that require considering each population separately. This is the first comprehensive genome-wide prediction study that investigated details of the effect of GEI on stripe rust resistance across diverse spring wheat populations.

4.
BMC Genomics ; 22(1): 900, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911435

RESUMO

BACKGROUND: Pre-harvest sprouting (PHS) is a major problem for wheat production due to its direct detrimental effects on wheat yield, end-use quality and seed viability. Annually, PHS is estimated to cause > 1.0 billion USD in losses worldwide. Therefore, identifying PHS resistance quantitative trait loci (QTLs) is crucial to aid molecular breeding efforts to minimize losses. Thus, a doubled haploid mapping population derived from a cross between white-grained PHS susceptible cv AAC Innova and red-grained resistant cv AAC Tenacious was screened for PHS resistance in four environments and utilized for QTL mapping. RESULTS: Twenty-one PHS resistance QTLs, including seven major loci (on chromosomes 1A, 2B, 3A, 3B, 3D, and 7D), each explaining ≥10% phenotypic variation for PHS resistance, were identified. In every environment, at least one major QTL was identified. PHS resistance at most of these loci was contributed by AAC Tenacious except at two loci on chromosomes 3D and 7D where it was contributed by AAC Innova. Thirteen of the total twenty-one identified loci were located to chromosome positions where at least one QTL have been previously identified in other wheat genotype(s). The remaining eight QTLs are new which have been identified for the first time in this study. Pedigree analysis traced several known donors of PHS resistance in AAC Tenacious genealogy. Comparative analyses of the genetic intervals of identified QTLs with that of already identified and cloned PHS resistance gene intervals using IWGSC RefSeq v2.0 identified MFT-A1b (in QTL interval QPhs.lrdc-3A.1) and AGO802A (in QTL interval QPhs.lrdc-3A.2) on chromosome 3A, MFT-3B-1 (in QTL interval QPhs.lrdc-3B.1) on chromosome 3B, and AGO802D, HUB1, TaVp1-D1 (in QTL interval QPhs.lrdc-3D.1) and TaMyb10-D1 (in QTL interval QPhs.lrdc-3D.2) on chromosome 3D. These candidate genes are involved in embryo- and seed coat-imposed dormancy as well as in epigenetic control of dormancy. CONCLUSIONS: Our results revealed the complex PHS resistance genetics of AAC Tenacious and AAC Innova. AAC Tenacious possesses a great reservoir of important PHS resistance QTLs/genes supposed to be derived from different resources. The tracing of pedigrees of AAC Tenacious and other sources complements the validation of QTL analysis results. Finally, comparing our results with previous PHS studies in wheat, we have confirmed the position of several major PHS resistance QTLs and candidate genes.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Genótipo , Dormência de Plantas , Triticum/genética
5.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599868

RESUMO

Fusarium head blight (FHB) is one of the most devastating wheat disease due to its direct detrimental effects on grain-yield, quality and marketability. Resistant cultivars offer the most effective approach to manage FHB; however, the lack of different resistance resources is still a major bottleneck for wheat breeding programs. To identify and dissect FHB resistance, a doubled haploid wheat population produced from the Canadian spring wheat cvs AAC Innova and AAC Tenacious was phenotyped for FHB response variables incidence and severity, visual rating index (VRI), deoxynivalenol (DON) content, and agronomic traits days to anthesis (DTA) and plant height (PHT), followed by single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker genotyping. A high-density map was constructed consisting of 10,328 markers, mapped on all 21 chromosomes with a map density of 0.35 cM/marker. Together, two major quantitative trait loci for FHB resistance were identified on chromosome 2D from AAC Tenacious; one of these loci on 2DS also colocated with loci for DTA and PHT. Another major locus for PHT, which cosegregates with locus for low DON, was also identified along with many minor and epistatic loci. QTL identified from AAC Tenacious may be useful to pyramid FHB resistance.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Fusarium/fisiologia , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Interações Hospedeiro-Parasita , Melhoramento Vegetal , Triticum/metabolismo , Triticum/microbiologia
6.
Front Plant Sci ; 11: 570418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519835

RESUMO

Fusarium head blight (FHB) is a serious fungal disease affecting wheat and other cereals worldwide. This fungus causes severe yield and quality losses from a reduction in grain quality and contamination of grain with mycotoxins. Intensive breeding efforts led to the release of AAC Tenacious, which was the first spring wheat cultivar registered in Canada with a resistant (R) rating to FHB. To elucidate the physiological mechanisms of resistance, we performed histological and transcriptomic analyses of AAC Tenacious and a susceptible control Roblin after inoculation with Fusarium graminearum (Fg). The spikelet and rachis of infected wheat spikes were hand sectioned and monitored by confocal and fluorescent microscopy. Visible hyphae were observed within the inoculated spikelets for AAC Tenacious; however, the infection was largely restricted to the point of inoculation (POI), whereas the adjacent florets in Roblin were heavily infected. Significant cell wall thickening within the rachis node below the POI was evident in AAC Tenacious compared to Roblin in response to Fg inoculation. Rachis node and rachilla tissues from the POI and the rachis node below the POI were collected at 5 days post inoculation for RNAseq. Significant changes in gene expression were detected in both cultivars in response to infection. The rachis node below the POI in AAC Tenacious had fewer differentially expressed genes (DEGs) when compared to the uninoculated control, likely due to its increased disease resistance. Analysis of DEGs in Roblin and AAC Tenacious revealed the activation of genes and pathways in response to infection, including those putatively involved in cell wall modification and defense response.

7.
Genes (Basel) ; 9(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304028

RESUMO

Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale.

8.
Gene ; 637: 72-89, 2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28935260

RESUMO

Leaf rust is a fungal disease that causes severe yield losses in wheat. Resistant varieties with major and quantitative resistance genes are the most effective method to control the disease. However, the main problem is inadequate information for understanding resistance mechanism and its usefulness. This paper presents Lr28 mediated genome-wide response of known and unknown genes during wheat-Puccinia triticina interaction. In this study, we prepared Serial Analysis of Gene Expression (SAGE) libraries using seedling wheat mRNA for infected and mock conditions. The libraries were sequenced on Sequencing by Oligonucleotide Ligation and Detection (SOLiD) system generating 37-48 million reads. After mapping and gene expression analysis of ~6-12 million trimmed reads/library, we revealed five major categories comprised of Lr28 controlled transcripts in resistant (+Lr28) isoline (39), transcripts specific to susceptible (-Lr28) isoline (785), transcripts specific to hypersensitive-response (HR) (375), transcripts specific for basal-defense (153) and transcripts for establishment of pathogen (1616). We estimated the impact of specific genes and pathways through mapping on plant resistant gene database (PRGdb), reactive oxygen species (ROS) and phytohormone database. Functional annotation results revealed, receptor binding, homeostatic processes and cytoskeletal components as the major discriminating factors between susceptibility and resistance. We validated 28 key genes using qRT-PCR and found positive results. These findings were projected on hypothetical interaction model to demonstrate interaction mechanism. The study might have significant impact on future rust-resistance breeding through knowledge based smart genetic selection of quantitative resistance genes besides major effect R-gene.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Transcriptoma , Triticum/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia
9.
Funct Integr Genomics ; 15(2): 233-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25432546

RESUMO

Wheat genotype CSP44 carrying a recessive gene Lr48 exhibits adult plant resistance (APR; incompatible reaction) but gives a compatible reaction (susceptibility) at the seedling stage against leaf rust. A comparative gene expression analysis involving cDNA-amplified fragment length polymorphism (cDNA-AFLP) and quantitative PCR (qPCR) was carried out for incompatible and compatible reactions in the genotype CSP44. cDNA-AFLP analysis was conducted using RNA samples that were isolated from flag leaves following inoculation with leaf rust race 77-5 (the most virulent race) and also after mock inoculation. As many as 298 of a total of 493 expressed transcript-derived fragments (TDFs) exhibited differential expression (262 upregulated and 36 downregulated). Of these 298 TDFs, 48 TDFs were eluted from gels, re-amplified, cloned, and sequenced. Forty two of these 48 TDFs had homology with known genes involved in the following biological processes: energy production, metabolism, transport, signaling, defense response, plant-pathogen interaction, transcriptional regulation, translation, and proteolysis. The functions of the remaining six TDFs could not be determined; apparently, these represented some novel genes. The qPCR analysis for 18 TDFs (with known and unknown functions, but showing major differences in expression) was conducted using RNA isolated from the seedlings as well as from the adult plants. The expression of at least 11 TDFs was induced and that of 4 other TDFs attenuated or remained near normal in adult plants following leaf rust inoculations. The remaining three TDFs had non-specific/developmental stage-specific expression. Functional annotation of TDFs that were upregulated suggest that the APR was supported by transient recruitment and reprogramming of processes like perception and recognition of pathogen effector by receptors, followed by CDPK and MAPK signaling, transport, metabolism, and energy release.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Basidiomycota , Resistência à Doença/genética , Genes de Plantas , Genes Recessivos , Triticum/metabolismo
10.
Funct Integr Genomics ; 14(4): 707-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25228409

RESUMO

Wheat is an important staple crop, and its productivity is severely constrained by drought stress (DS). An understanding of the molecular basis of drought tolerance is necessary for genetic improvement of wheat for tolerance to DS. The two-component system (TCS) serves as a common sensor-regulator coupling mechanism implicated in the regulation of diverse biological processes (including response to DS) not only in prokaryotes, but also in higher plants. In the latter, TCS generally consists of two signalling elements, a histidine kinase (HK) and a response regulator (RR) associated with an intermediate element called histidine phosphotransferase (HPT). Keeping in view the possible utility of TCS in developing water use efficient (WUE) wheat cultivars, we identified and characterized 62 wheat genes encoding TCS elements in a silico study; these included 7 HKs, 45 RRs along with 10 HPTs. Twelve of the 62 genes showed relatively higher alterations in the expression under drought. The quantitative RT-PCR (qRT-PCR)-based expression analysis of these 12 TCS genes was carried out in wheat seedlings of a drought sensitive (HD2967) and a tolerant (Dharwar Dry) cultivar subjected to either dehydration stress or cytokinin treatment. The expression of these 12 genes under dehydration stress differed in sensitive and tolerant genotypes, even though for individual genes, both showed either up-regulation or down-regulation. In response to the treatment of cytokinin, the expression of type-A RR genes was higher in the tolerant genotype, relative to that in the sensitive genotype, the situation being reverse for the type-B RRs. These results have been discussed in the context of the role of TCS elements in drought tolerance in wheat.


Assuntos
Adaptação Fisiológica , Transdução de Sinais , Estresse Fisiológico , Triticum/genética , Triticum/fisiologia , Adaptação Fisiológica/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Simulação por Computador , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Peso Molecular , Oryza/genética , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Software , Estresse Fisiológico/genética
11.
J Genet ; 91(1): 21-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22546823

RESUMO

Jute is an important natural fibre crop, which is only second to cotton in its importance at the global level. It is mostly grown in Indian subcontinent and has been recently used for the development of genomics resources.We recently initiated a programme to develop simple sequence repeat markers and reported a set of 2469 SSR that were developed using four SSR-enriched libraries (Mir et al. 2009). In this communication, we report an additional set of 607 novel SSR in 393 SSR containing sequences. However, primers could be designed for only 417 potentially useful SSR. Polymorphism survey was carried out for 374 primer pairs using two parental genotypes (JRO 524 and PPO4) of a mapping population developed for fibre fineness; only 66 SSR were polymorphic. Owing to a low level of polymorphism between the parental genotypes and a high degree of segregation distortion in recombinant inbred lines, genotypic data of only 53 polymorphic SSR on the mapping population consisting of 120 RIL could be used for the construction of a linkage map; 36 SSR loci were mapped on six linkage groups that covered a total genetic distance of 784.3 cM. Hopefully, this map will be enriched with more SSR loci in future and will prove useful for identification of quantitative trait loci/genes for molecular breeding involving improvement of fibre fineness and other related traits in jute.


Assuntos
Mapeamento Cromossômico/métodos , Corchorus/genética , Repetições de Microssatélites/genética , Alelos , Sequência de Bases , Primers do DNA/metabolismo , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Marcadores Genéticos , Genoma de Planta/genética , Motivos de Nucleotídeos/genética , Polimorfismo Genético
12.
Funct Plant Biol ; 38(6): 479-492, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480902

RESUMO

Genome-wide transcriptome analysis of seedling resistance to leaf rust conferred by Lr28 gene in wheat (Triticum aestivum L.) was conducted to identify differentially expressed genes during incompatible interaction. A virulent leaf rust race 77-5 was used for inoculation of resistant (HD2329+Lr28) and susceptible (HD2329 - Lr28) wheat NILs and cDNA-AFLP analyses was carried out. As many as 223 differential transcripts appeared following leaf rust inoculation; these included 122 transcripts that appeared exclusively in resistant NIL, whereas 39 transcripts appeared both in resistant and susceptible NILs. Sequence analyses of 37 transcripts, which appeared in the resistant NIL revealed that 15 transcripts had homology with genes involved in protein synthesis, signal transduction, transport, disease resistance and metabolism. The functions of remaining 22 transcripts could not be determined; these included six novel genes reported for the first time in wheat. Specific primers could be designed for 18 of the 37 transcripts, which included genes with putative and unknown functions. Quantitative real time PCR analysis was conducted using these 18 pairs of primers. A majority (13) of these transcripts appeared within 48h reaching a peak value at 96h in resistant NIL signifying their role in providing leaf rust resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA