Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Int J Mol Sci ; 21(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295299

RESUMO

Matrix production by nucleus pulposus (NP) cells, the cells residing in the center of the intervertebral disc, can be stimulated by growth factors. Bone morphogenetic proteins (BMPs) hold great promise. Although BMP2 and BMP7 have been used most frequently, other BMPs have also shown potential for NP regeneration. Heterodimers may be more potent than single homodimers, but it is not known whether combinations of homodimers would perform equally well. In this study, we compared BMP2, BMP4, BMP6, and BMP7, their combinations and heterodimers, for regeneration by human NP cells. The BMPs investigated induced variable matrix deposition by NP cells. BMP4 was the most potent, both in the final neotissue glysosaminoglycan content and incorporation efficiency. Heterodimers BMP2/6H and BMP2/7H were more potent than their respective homodimer combinations, but not the BMP4/7H heterodimer. The current results indicate that BMP4 might have a high potential for regeneration of the intervertebral disc. Moreover, the added value of BMP heterodimers over their respective homodimer BMP combinations depends on the BMP combination applied.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Núcleo Pulposo/fisiologia , Regeneração , Proteínas Morfogenéticas Ósseas/química , Células Cultivadas , Técnicas de Cocultura , Colágeno/metabolismo , Expressão Gênica , Imuno-Histoquímica , Ligação Proteica , Multimerização Proteica , Proteoglicanas/metabolismo
2.
Connect Tissue Res ; 61(2): 137-151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30526130

RESUMO

Bioprinting is a promising tool to fabricate organized cartilage. This study aimed to investigate the printability of gelatin-methacryloyl/gellan gum (gelMA/gellan) hydrogels with and without methacrylated hyaluronic acid (HAMA), and to explore (zone-specific) chondrogenesis of chondrocytes, articular cartilage progenitor cells (ACPCs), and multipotent mesenchymal stromal cells (MSCs) embedded in these bio-inks.The incorporating of HAMA in gelMA/gellan bio-ink increased filament stability, as measured using a filament collapse assay, but did not influence (zone-specific) chondrogenesis of any of the cell types. Highest chondrogenic potential was observed for MSCs, followed by ACPCs, which displayed relatively high proteoglycan IV mRNA levels. Therefore, two-zone constructs were printed with gelMA/gellan/HAMA containing ACPCs in the superficial region and MSCs in the middle/deep region. Chondrogenic differentiation was confirmed, however, printing influence cellular differentiation.ACPC- and MSC-laden gelMA/gellan/HAMA hydrogels are of interest for the fabrication of cartilage constructs. Nevertheless, this study underscores the need for careful evaluation of the effects of printing on cellular differentiation.


Assuntos
Bioimpressão , Cartilagem/metabolismo , Condrócitos/metabolismo , Tinta , Impressão Tridimensional , Células-Tronco/metabolismo , Engenharia Tecidual , Animais , Cartilagem/citologia , Condrócitos/citologia , Cavalos , Células-Tronco/citologia
3.
PLoS One ; 14(7): e0220028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365542

RESUMO

To induce osteogenicity in bone graft substitutes, plasmid-based expression of BMP-2 (pBMP-2) has been successfully applied in gene activated matrices based on alginate polymer constructs. Here, we investigated whether cell seeding is necessary for non-viral BMP-2 gene expression in vivo. Furthermore, to gain insight in the role of BMP-producing cells, we compared inclusion of bone progenitor cells with non-osteogenic target cells in gene delivery constructs. Plasmid DNA encoding GFP (pGFP) was used to trace transfection of host tissue cells and seeded cells in a rat model. Transgene expression was followed in both cell-free alginate-ceramic constructs as well as constructs seeded with syngeneic fibroblasts or multipotent mesenchymal stromal cells (MSCs). Titration of pGFP revealed that the highest pGFP dose resulted in frequent presence of positive host cells in the constructs. Both cell-loaded groups were associated with transgene expression, most effectively in the MSC-loaded constructs. Subsequently, we investigated effectiveness of cell-free and cell-loaded alginate-ceramic constructs with pBMP-2 to induce bone formation. Local BMP-2 production was found in all groups containing BMP-2 plasmid DNA, and was most pronounced in the groups with MSCs transfected with high concentration pBMP-2. Bone formation was only apparent in the recombinant protein BMP-2 group. In conclusion, we show that non-viral gene delivery of BMP-2 is a potentially effective way to induce transgene expression in vivo, both in cell-seeded as well as cell-free conditions. However, alginate-based gene delivery of BMP-2 to host cells or seeded cells did not result in protein levels adequate for bone formation in this setting, calling for more reliable scaffold compatible transfection methods.


Assuntos
Proteína Morfogenética Óssea 2/genética , Regeneração Óssea , Alginatos/química , Animais , Diferenciação Celular , Cerâmica/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Plasmídeos/genética , Plasmídeos/metabolismo , Ratos , Ratos Endogâmicos F344 , Transfecção/métodos
4.
Adv Healthc Mater ; 8(10): e1801444, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30941927

RESUMO

Niches in the bone marrow regulate hematopoietic stem and progenitor cell (HSPC) fate and behavior through cell-cell interactions and soluble factor secretion. The niche-HSPC crosstalk is a very complex process not completely elucidated yet. To aid further investigation of this crosstalk, a functional in vitro 3D model that closely represents the main supportive compartments of the bone marrow is developed. Different combinations of human stromal cells and hydrogels are tested for their potential to maintain CD34+ HSPCs. Cell viability, clonogenic hematopoietic potential, and surface marker expression are assessed over time. Optimal HSPC support is obtained in presence of adipogenic and osteogenic cells, together with progenitor derived endothelial cells. When cultured in a bioactive hydrogel, the supportive cells self-assemble into a hypoxic stromal network, stimulating CD34+ CD38+ cell formation, while maintaining the pool of CD34+ 38- HSPCs. HSPC clusters colocalize with the stromal networks, in close proximity to sinusoidal clusters of CD31+ endothelial cells. Importantly, the primary in vitro niche model supports HSPCs with no cytokine addition. Overall, the engineered primary 3D bone marrow environment provides an easy and reliable model to further investigate interactions between HSPCs and their endosteal and perivascular niches, in the context of normal hematopoiesis or blood-related diseases.


Assuntos
Células-Tronco Hematopoéticas/citologia , Hidrogéis/química , Adipogenia/efeitos dos fármacos , Alginatos/química , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Combinação de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hidrogéis/farmacologia , Laminina/química , Osteogênese/efeitos dos fármacos , Proteoglicanas/química , Nicho de Células-Tronco
6.
Tissue Eng Part A ; 25(13-14): 1037-1052, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612538

RESUMO

IMPACT STATEMENT: Biomaterials can play a dual role in bone regeneration: they enable local sustained delivery of growth factors, such as bone morphogenetic protein-2 (BMP-2), while they provide structural support as scaffold. By better imitating the properties of native bone tissue, scaffolds may be both osteoconductive and osteoinductive. The latter can be achieved by modifying the electrical charge of the surface. The present work uses tunable oligo[(polyethylene glycol) fumarate] hydrogel and demonstrates that negative charge enhances BMP-2-induced bone formation compared with neutral or positive charge. Altogether, this indicates that tissue-specific surface charge modifications of biomaterials hold great promise in the field of tissue regeneration.


Assuntos
Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Eletricidade , Osteogênese/efeitos dos fármacos , Animais , Liberação Controlada de Fármacos , Implantes Experimentais , Cinética , Masculino , Microesferas , Polímeros/química , Ratos Sprague-Dawley , Microtomografia por Raio-X
7.
Tissue Eng Part A ; 25(3-4): 193-202, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30101676

RESUMO

IMPACT STATEMENT: The main challenge in bone morphogenic protein 2 (BMP-2)-based application lies in finding strategies to prolong its biologic activity as it has a short biological half-life. The present study uses a phosphate-modified oligo[(polyethylene glycol) fumarate] hydrogel that can be tuned to achieve differential release profiles of biologically active BMP-2 release. We demonstrate that this platform outperforms Infuse®, currently used in the clinic and that the osteoinductive effect of BMP-2 is location dependent. Altogether, this study stresses the importance of evaluating efficacy of bone tissue engineering strategies at an orthotopic location rather than subcutaneously. Even more so, it emphasizes the role of biomaterials as a scaffold to achieve proper bone tissue engineering.


Assuntos
Proteína Morfogenética Óssea 2 , Osso e Ossos/metabolismo , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacocinética , Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/citologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Masculino , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Tissue Eng Part C Methods ; 24(7): 379-390, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29756545

RESUMO

Local sustained delivery of bioactive molecules from biomaterials is a promising strategy to enhance bone regeneration. To optimize delivery vehicles for bone formation, the design characteristics are tailored with consequential effect on bone morphogenetic protein-2 (BMP-2) release and bone regeneration. Complying with the 3R principles (Replacement, Reduction, and Refinement), the growth factor release is often investigated in vitro using several buffers to mimic the in vivo physiological environment. However, this remains an unmet need. Therefore, this study investigates the in vitro-in vivo correlation (IVIVC) of BMP-2 release from complex delivery vehicles in several commonly used in vitro buffers: cell culture model, phosphate buffered saline, and a strong desorption buffer. The results from this study showed that the release environment affected the BMP-2 release profiles, creating distinct relationships between release versus time and differences in extent of release. According to the guidance set by the U.S. Food and Drug Administration (FDA), IVIVC resulted in level A internal predictability for individual composites. Since the IVIVC was influenced by the BMP-2 loading method and composite surface chemistry, the external predictive value of the IVIVCs was limited. These results show that the IVIVCs can be used for predicting the release of an individual composite. However, the models cannot be used for predicting in vivo release for different composite formulations since they lack external predictability. Potential confounding effects of drug type, delivery vehicle formulations, and application site should be added to the equation to develop one single IVIVC applicable for complex delivery vehicles. Altogether, these results imply that more sophisticated in vitro systems should be used in bone regeneration to accurately discriminate and predict in vivo BMP-2 release from different complex delivery vehicles.


Assuntos
Proteína Morfogenética Óssea 2/farmacocinética , Regeneração Óssea , Sistemas de Liberação de Medicamentos , Osteogênese , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Técnicas In Vitro , Masculino , Microesferas , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
9.
J Tissue Eng Regen Med ; 12(6): 1339-1351, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603878

RESUMO

The optimal release profile of locally delivered bone morphogenetic protein-2 (BMP-2) for safe and effective clinical application is unknown. In this work, the effect of differential BMP-2 release on bone formation was investigated using a novel biomaterial oligo[(polyethylene glycol) fumarate] bis[2-(methacryloyloxy) ethyl] phosphate hydrogel (OPF-BP) containing poly(lactic-co-glycolic acid) microspheres. Three composite implants with the same biomaterial chemistry and structure but different BMP-loading methods were created: BMP-2 encapsulated in microspheres (OPF-BP-Msp), BMP-2 encapsulated in microspheres and adsorbed on the phosphorylated hydrogel (OPF-BP-Cmb), and BMP-2 adsorbed on the phosphorylated hydrogel (OPF-BP-Ads). These composites were compared with the clinically used BMP-2 carrier, Infuse® absorbable collagen sponge (ACS). Differential release profiles of bioactive BMP-2 were achieved by these composites. In a rat subcutaneous implantation model, OPF-BP-Ads and ACS generated a large BMP-2 burst release (>75%), whereas a more sustained release was seen for OPF-BP-Msp and OPF-BP-Cmb (~25% and 50% burst, respectively). OPF-BP-Ads generated significantly more bone than did all other composites, and the bone formation was 12-fold higher than that of the clinically used ACS. Overall, this study clearly shows that BMP-2 burst release generates more subcutaneous bone than do sustained release in OPF-BP-microsphere composites. Furthermore, composites should not only function as a delivery vehicle but also provide a proper framework to achieve appropriate bone formation.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Hidrogéis/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Implantes Experimentais , Cinética , Masculino , Microesferas , Fosforilação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Sprague-Dawley , Alicerces Teciduais/química , Microtomografia por Raio-X
10.
Tissue Eng Part C Methods ; 24(5): 300-312, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29652626

RESUMO

The bone marrow microenvironment is the preferred location of multiple myeloma, supporting tumor growth and development. It is composed of a collection of interacting subniches, including the endosteal and perivascular niche. Current in vitro models mimic either of these subniches. By developing a model combining both niches, this study aims to further enhance the ability to culture primary myeloma cells in vitro. Also, the dependency of myeloma cells on each niche was studied. A 3D bone marrow model containing two subniches was created using 3D bioprinting technology. We used a bioprintable pasty calcium phosphate cement (CPC) scaffold with seeded osteogenic multipotent mesenchymal stromal cells (O-MSCs) to model the endosteal niche, and Matrigel containing both endothelial progenitor cells (EPCs) and MSCs to model the perivascular niche. Within the model containing one or both of the niches, primary CD138+ myeloma cells were cultured and analyzed for both survival and proliferation. The 3D bone marrow model with combined subniches significantly increasing the proliferation of CD138+ myeloma cells compared to both environments separately. The developed model showed an essential role of the perivascular niche over the endosteal niche in supporting myeloma cells. The developed model can be used to study the expansion of primary myeloma cells and their interactions with varying bone marrow subniches.


Assuntos
Medula Óssea/irrigação sanguínea , Microambiente Celular , Modelos Biológicos , Mieloma Múltiplo/patologia , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química
11.
Tissue Eng Part C Methods ; 24(4): 222-232, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29457534

RESUMO

Hydrogels can facilitate nucleus pulposus (NP) regeneration, either for clinical application or research into mechanisms of regeneration. However, many different hydrogels and culture conditions for human degenerated NP have been employed, making literature data difficult to compare. Therefore, we compared six different hydrogels of natural polymers and investigated the role of serum in the medium and of osmolarity during expansion or redifferentiation in an attempt to provide comparators for future studies. Human NP cells of Thompson grade III discs were cultured in alginate, agarose, fibrin, type II collagen, gelatin methacryloyl (gelMA), and hyaluronic acid-poly(ethylene glycol) hydrogels. Medium containing fetal bovine serum and a serum-free (SF) medium were compared in agarose, gelMA, and type II collagen hydrogels. Isolation and expansion of NP cells in low compared to high osmolarity medium were performed before culture in agarose and type II collagen hydrogels in media of varying osmolarity. NP cells in agarose produced the highest amounts of proteoglycans, followed by cells in type II collagen hydrogels. The absence of serum reduced the total amount of proteoglycans produced by the cells, although incorporation efficiency was higher in type II collagen hydrogels in the absence than in the presence of serum. Isolation and expansion of NP cells in high osmolarity medium improved proteoglycan production during culture in hydrogels, but variation in osmolarity during redifferentiation did not have any effect. Agarose hydrogels seem to be the best option for in vitro culture of human NP cells, but for clinical application, type II collagen hydrogels may be better because, as opposed to agarose, it degrades in time. Although culture in SF medium reduces the amount of proteoglycans produced during redifferentiation culture, isolating and expanding the cells in high osmolarity medium can largely compensate for this loss.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Disco Intervertebral/citologia , Núcleo Pulposo/citologia , Regeneração , Idoso , Células Cultivadas , Colágeno Tipo II/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Disco Intervertebral/metabolismo , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Concentração Osmolar
12.
ALTEX ; 35(1): 65-76, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28884783

RESUMO

The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process. To reduce animal experiments, an ex vivo osteochondral plug model was used and evaluated. The role of the delivered and endogenous cells in the repair process was investigated. Full thickness cartilage defects were created in equine osteochondral plugs. Defects were filled with (A) chondrocytes at the bottom of the defect, covered with a cell-free hydrogel, (B) chondrocytes homogeneously encapsulated in a hydrogel, and (C, D) combinations of A and B with different cell densities. Plugs were cultured for up to 57 days, after which the cartilage and repair tissues were characterized and compared to baseline samples. Additionally, at day 21, the origin of cells in the repair tissue was evaluated. Best outcomes were obtained with conditions C and D, which resulted in well-integrated cartilage-like tissue that completely filled the defect, regardless of the initial cell density. A critical role of the spatial chondrocyte distribution in the repair process was observed. Moreover, the osteochondral plugs stimulated cartilage formation in the hydrogels when cultured in the defects. The resulting repair tissue originated from the delivered cells. These findings confirm the potential of the osteochondral plug model for the optimization of the composition of cartilage implants and for studying repair mechanisms.


Assuntos
Cartilagem/fisiologia , Condrócitos/fisiologia , Hidrogéis , Engenharia Tecidual/métodos , Alternativas aos Testes com Animais , Animais , Células Cultivadas , Cavalos
13.
J Biomed Mater Res B Appl Biomater ; 106(2): 477-487, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28186684

RESUMO

To investigate the effect of sustained bone morphogenetic protein-2 (BMP-2) release kinetics on bone formation in poly(propylene fumarate) (PPF) scaffolds, different poly(lactic-co-glycolic acid) (PLGA) microspheres were used as delivery vehicles. All PPF scaffolds had the same 75% porous structure, while the degradation rate of the embedded PLGA microspheres was changed to tailor BMP-2 release by varying the lactic-to-glycolic acid (L:G) ratio in the copolymer. Four PLGA microsphere formulations with 50/50, 65/35, 75/25, and 85/15 L:G ratios and varying in vivo degradation rates were fabricated. The in vitro and in vivo BMP-2 release kinetics were determined by analyzing radiolabeled 125 I-BMP-2. Biological activity of released BMP-2 was tested using a W20-17 cell culture model in vitro and a subcutaneous rat model in vivo. Corresponding outcome parameters were defined as capacity to increase the in vitro AP activity in weekly consecutive cell cultures over 14 weeks and the in vivo bone formation after 7 and 14 weeks. The PLGA/PPF composites showed similar biological activity and BMP-2 release profiles in vitro. In vivo, PPF/PLGA 85:15 composite released significantly less BMP-2 per time point in the first weeks. Micro-CT and histological analysis after 7 and 14 weeks of implantation showed bone formation, which significantly increased over time for all composites. No significant differences were seen between the composites. Overall, the results of this study show that small differences in BMP-2 sustained release had no significant effect on BMP-2 osteogenic efficacy in PPF/PLGA composites. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 477-487, 2018.


Assuntos
Proteína Morfogenética Óssea 2/farmacocinética , Substitutos Ósseos/farmacologia , Liberação Controlada de Fármacos , Fumaratos/farmacologia , Osteogênese/efeitos dos fármacos , Polipropilenos/farmacologia , Animais , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Substitutos Ósseos/química , Linhagem Celular , Extremidades/transplante , Fumaratos/química , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacologia , Cinética , Masculino , Camundongos , Microesferas , Osteoblastos/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Polipropilenos/química , Porosidade , Ratos , Ratos Sprague-Dawley
14.
Spine (Phila Pa 1976) ; 43(5): 307-315, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-25856264

RESUMO

STUDY DESIGN: An in vitro study using human degenerated nucleus pulposus cells. OBJECTIVE: To determine the effect of osmolality and different osmolytes on the regeneration by human nucleus pulposus cells through gene expression and extracellular matrix production. SUMMARY OF BACKGROUND DATA: Intervertebral disc (IVD) degeneration is a major problem in developed countries. Regeneration of the IVD can prevent pain and costs due to diminished work absence and health care, and improve quality of life. The osmotic value of a disc decreases during degeneration due to loss of proteoglycans and might increase degeneration. It is known that gene expression of matrix genes of nucleus pulposus (NP) cells increases when cultured in hyperosmotic medium. Thus, increasing the osmolality of the disc might be beneficial for disc regeneration. METHODS: In the current study, isolated degenerated human NP cells were used in regeneration culture with medium of different osmolalities, adjusted with different osmolytes. NaCl, urea and sucrose. The cells were cultured for 28 days and expression of matrix genes and production of glycosaminoglycans and collagen II were measured. RESULTS: Gene expression for both collagen II and aggrecan increased with increasing osmolality using NaCl or sucrose, but not urea. Protein production however, was not affected by increasing osmolality and was decreased when using urea and sucrose. Expression of genes for Col1A1, MMP13, and MMP14 decreased with increasing osmolality, whereas expression of LOXL2 and LOXL3 increased. Transient expression of TonEBP was found 6 hours after the start of culture, but not at later time points. CONCLUSION: Although expression of matrix genes is upregulated, hyperosmolality does not enhance matrix production by nucleus pulposus cells. Raising osmolality can potentially increase matrix production, but in itself is not sufficient to accomplish regeneration in the current in vitro culture system. LEVEL OF EVIDENCE: N /A.


Assuntos
Meios de Cultura/farmacologia , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Regeneração/fisiologia , Regulação para Cima/fisiologia , Adulto , Idoso , Agrecanas/biossíntese , Agrecanas/genética , Aminoácido Oxirredutases/biossíntese , Aminoácido Oxirredutases/genética , Células Cultivadas , Meios de Cultura/química , Matriz Extracelular/genética , Feminino , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/genética , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/citologia , Núcleo Pulposo/efeitos dos fármacos , Proteoglicanas/biossíntese , Proteoglicanas/genética , Regeneração/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Tissue Eng Part A ; 24(9-10): 819-829, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29065776

RESUMO

Off-the-shelf availability in large quantities, drug delivery functionality, and modifiable chemistry and mechanical properties make synthetic polymers highly suitable candidates for bone grafting. However, most synthetic polymers lack the ability to support cell attachment, proliferation, migration, and differentiation, and ultimately tissue formation. Incorporating anionic peptides into the polymer that mimics acidic proteins, which contribute to biomineralization and cellular attachment, could enhance bone formation. Therefore, this study investigates the effect of a phosphate functional group on osteoconductivity and BMP-2-induced bone formation in an injectable and biodegradable oligo[(polyethylene glycol) fumarate] (OPF) hydrogel. Three types of OPF hydrogels were fabricated using 0%, 20%, or 40% Bis(2-(methacryloyloxy)ethyl) phosphate creating unmodified OPF-noBP and phosphate-modified OPF-BP20 and OPF-BP40, respectively. To account for the osteoinductive effect of various BMP-2 release profiles, two different release profiles (i.e., different ratios of burst and sustained release) were obtained by varying the BMP-2 loading method. To investigate the osteoconductive effect of phosphate modification, unloaded OPF composites were assessed for bone formation in a bone defect model after 3, 6, and 9 weeks. To determine the effect of the hydrogel phosphate modification on BMP-2-induced bone formation, BMP-2 loaded OPF composites with differential BMP-2 release were analyzed after 9 weeks of subcutaneous implantation in rats. The phosphate-modified OPF hydrogels (OPF-BP20 and OPF-BP40) generated significantly more bone in an orthotopic defect compared to the unmodified hydrogel (OPF-noBP). Furthermore, the phosphate functionalized surface-enhanced BMP-2-induced ectopic bone formation regardless of the BMP-2 release profile. In conclusion, this study clearly shows that phosphate functional groups improve the osteoconductive properties of OPF and enhanced BMP-2-induced bone formation. Therefore, functionalizing hydrogels with phosphate groups by crosslinking monomers into the hydrogel matrix could provide a valuable method for improving polymer characteristics and holds great promise for bone tissue engineering.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Animais , Microscopia Eletrônica de Varredura , Microesferas , Ratos
16.
Acta Biomater ; 66: 238-247, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174589

RESUMO

Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown. In this study we compared focal adhesion formation and glycosaminoglycan (GAG) deposition by NP cells in a range of hydrogels. Using a focal adhesion kinase (FAK) inhibitor, we demonstrated that focal adhesion signaling is involved in the response of NP cells in hydrogels that contain integrin binding sites (i.e. methacrylated gelatin (gelMA) and type II collagen), but not in hydrogels deplete from integrin binding sites such as alginate and agarose, or CD44-binding hydrogels based on hyaluronic acid. As a result of FAK inhibition we observedenhanced proteoglycan production in gelMA, but decreased production in type II collagen hydrogels, which could be explained by alteration in cell fate as supported by the increase in the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARy). Furthermore, GAG deposition was inversely proportional to polymer concentration in integrin-binding gelMA, while no direct relationship was found for the non-integrin binding gels alginate and agarose. This corroborates our finding that focal adhesion formation plays an important role in NP cell response to its surrounding matrix. STATEMENT OF SIGNIFICANCE: Biomaterials are increasingly being investigated for regenerative medicine applications, including regeneration of the nucleus pulposus. Cells interact with their environment and are influenced by extracellular matrix or polymer properties. Insight in these interactions can improve regeneration and helps to understand degeneration processes. The role of focal adhesion formation in the regenerative response of nucleus pulposus cells is largely unknown. Therefore, the relation between materials, stiffness and focal adhesion formation is studied here.


Assuntos
Carboidratos/farmacologia , Colágeno/farmacologia , Adesões Focais/metabolismo , Hidrogéis/farmacologia , Núcleo Pulposo/citologia , Regeneração/efeitos dos fármacos , Transdução de Sinais , Actinas/metabolismo , Adulto , Idoso , Força Compressiva , DNA/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Coloração e Rotulagem , Vinculina/metabolismo
17.
PLoS One ; 12(6): e0177628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28586346

RESUMO

In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-crosslinkable hydrogels with increased mechanical stiffness and long-term stability, and with minimal decrease in cytocompatibility. Application of these tailor-made methacrylated hyaluronic acid (MeHA) gels for bone tissue engineering and 3D bioprinting was the subject of investigation. Visco-elastic properties of MeHA gels, measured by rheology and dynamic mechanical analysis, showed that irradiation of the hydrogels with UV light led to increased storage moduli and elastic moduli, indicating increasing gel rigidity. Subsequently, human bone marrow derived mesenchymal stromal cells (MSCs) were incorporated into MeHA hydrogels, and cell viability remained 64.4% after 21 days of culture. Osteogenic differentiation of MSCs occurred spontaneously in hydrogels with high concentrations of MeHA polymer, in absence of additional osteogenic stimuli. Addition of bone morphogenetic protein-2 (BMP-2) to the culture medium further increased osteogenic differentiation, as evidenced by increased matrix mineralisation. MeHA hydrogels demonstrated to be suitable for 3D bioprinting, and were printed into porous and anatomically shaped scaffolds. Taken together, photosensitive MeHA-based hydrogels fulfilled our criteria for cellular bioprinted bone constructs within a narrow window of concentration.


Assuntos
Bioimpressão , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Regeneração Óssea , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Glicosaminoglicanos/síntese química , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacologia , Humanos , Ácido Hialurônico/síntese química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Reologia , Engenharia Tecidual , Alicerces Teciduais
18.
Tissue Eng Part C Methods ; 23(11): 673-685, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28637383

RESUMO

Pathologic conditions associated with bone formation can serve as models to identify bone-promoting mediators. The inflammatory response to bacterial infections generally leads to osteolysis and impaired bone healing, but paradoxically, it can also have pro-osteogenic effects. As a potential model to investigate pro-osteogenic stimuli, this study characterizes the bone formation in an established rabbit tibia model of periprosthetic infection. Our hypothesis was that the infection with Staphylococcus aureus (S. aureus) correlates with bone formation as a response to local inflammation. Fluorochromes showed excessive subperiosteal bone formation in infected tibiae, starting the first week and continuing throughout the study period. Despite the observed cortical lysis on micro-CT after 28 days, infection resulted in a twofold higher bone volume in the proximal tibiae compared to uninfected controls. The ipsilateral fibulae, nor the contralateral fibulae or tibiae were affected by infection. Next, we sought to confine the cause of stimulated bone formation to the isolated S. aureus cell wall. In absence of virulent bacterial infection, the S. aureus cell wall extract induced bone in a more favorable way without cortical lysis. This suggests that the sterile inflammatory reaction to bacterial antigens may be harnessed for bone regenerative purposes. Future investigations in this rabbit tibia model can lead to further identification of effective stimuli for clinical application.


Assuntos
Inflamação/patologia , Osteogênese , Tíbia/patologia , Animais , Peso Corporal , Parede Celular/metabolismo , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Coelhos , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Tíbia/diagnóstico por imagem , Tíbia/microbiologia , Microtomografia por Raio-X
19.
Int J Artif Organs ; 40(4): 176-184, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28165584

RESUMO

BACKGROUND: Biodegradable PCL-b-PTMC-b-PCL triblock copolymers based on trimethylene carbonate (TMC) and ε-caprolactone (CL) were prepared and used in the 3D printing of tissue engineering scaffolds. Triblock copolymers of various molecular weights containing equal amounts of TMC and CL were prepared. These block copolymers combine the low glass transition temperature of amorphous PTMC (approximately -20°C) and the semi-crystallinity of PCL (glass transition approximately -60°C and melting temperature approximately 60°C). METHODS: PCL-b-PTMC-b-PCL triblock copolymers were synthesized by sequential ring opening polymerization (ROP) of TMC and ε-CL. From these materials, films were prepared by solvent casting and porous structures were prepared by extrusion-based 3D printing. RESULTS: Films prepared from a polymer with a relatively high molecular weight of 62 kg/mol had a melting temperature of 58°C and showed tough and resilient behavior, with values of the elastic modulus, tensile strength and elongation at break of approximately 120 MPa, 16 MPa and 620%, respectively. Porous structures were prepared by 3D printing. Ethylene carbonate was used as a crystalizable and water-extractable solvent to prepare structures with microporous strands. Solutions, containing 25 wt% of the triblock copolymer, were extruded at 50°C then cooled at different temperatures. Slow cooling at room temperature resulted in pores with widths of 18 ± 6 µm and lengths of 221 ± 77 µm, rapid cooling with dry ice resulted in pores with widths of 13 ± 3 µm and lengths of 58 ± 12 µm. These PCL-b-PTMC-b-PCL triblock copolymers processed into porous structures at relatively low temperatures may find wide application as designed degradable tissue engineering scaffolds. CONCLUSIONS: In this preliminary study we prepared biodegradable triblock copolymers based on 1,3-trimethylene carbonate and ε-caprolactone and assessed their physical characteristics. Furthermore, we evaluated their potential as melt-processable thermoplastic elastomeric biomaterials in 3D printing of tissue engineering scaffolds.


Assuntos
Caproatos/química , Dioxanos/química , Lactonas/química , Impressão Tridimensional , Alicerces Teciduais , Materiais Biocompatíveis , Elastômeros , Polímeros/síntese química , Engenharia Tecidual
20.
Stem Cells ; 35(1): 256-264, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27507787

RESUMO

Traditionally, mesenchymal stem cells (MSCs) isolated from adult bone marrow were described as being capable of differentiating to various lineages including cartilage. Despite increasing interest in these MSCs, concerns regarding their safety, in vivo behavior and clinical effectiveness have restrained their clinical application. We hypothesized that MSCs have trophic effects that stimulate recycled chondrons (chondrocytes with their native pericellular matrix) to regenerate cartilage. Searching for a proof of principle, this phase I (first-in-man) clinical trial applied allogeneic MSCs mixed with either 10% or 20% recycled autologous cartilage-derived cells (chondrons) for treatment of cartilage defects in the knee in symptomatic cartilage defect patients. This unique first in man series demonstrated no treatment-related adverse events up to one year postoperatively. At 12 months, all patients showed statistically significant improvement in clinical outcome compared to baseline. Magnetic resonance imaging and second-look arthroscopies showed completely filled defects with regenerative cartilage tissue. Histological analysis on biopsies of the grafts indicated hyaline-like regeneration with a high concentration of proteoglycans and type II collagen. Short tandem repeat analysis showed the regenerative tissue only contained patient-own DNA. These findings support the novel insight that the use of allogeneic MSCs is safe and opens opportunities for other applications. Stem cell-induced paracrine mechanisms may play an important role in the chondrogenesis and successful tissue regeneration found. Stem Cells 2017;35:256-264.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Condrócitos/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração , Adulto , Artroscopia , Cartilagem Articular/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Repetições de Microssatélites/genética , Transplante Autólogo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA