Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Med ; 30(3): 785-796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365950

RESUMO

Multiple clinical trials targeting the gut microbiome are being conducted to optimize treatment outcomes for immune checkpoint blockade (ICB). To improve the success of these interventions, understanding gut microbiome changes during ICB is urgently needed. Here through longitudinal microbiome profiling of 175 patients treated with ICB for advanced melanoma, we show that several microbial species-level genome bins (SGBs) and pathways exhibit distinct patterns from baseline in patients achieving progression-free survival (PFS) of 12 months or longer (PFS ≥12) versus patients with PFS shorter than 12 months (PFS <12). Out of 99 SGBs that could discriminate between these two groups, 20 were differentially abundant only at baseline, while 42 were differentially abundant only after treatment initiation. We identify five and four SGBs that had consistently higher abundances in patients with PFS ≥12 and <12 months, respectively. Constructing a log ratio of these SGBs, we find an association with overall survival. Finally, we find different microbial dynamics in different clinical contexts including the type of ICB regimen, development of immune-related adverse events and concomitant medication use. Insights into the longitudinal dynamics of the gut microbiome in association with host factors and treatment regimens will be critical for guiding rational microbiome-targeted therapies aimed at enhancing ICB efficacy.


Assuntos
Microbioma Gastrointestinal , Melanoma , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Melanoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Cognição
2.
Eur J Cancer ; 177: 164-174, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347135

RESUMO

BACKGROUND: Immune cell-driven anti-cancer activity is paramount for effective responses to checkpoint inhibitors (ICB). However, the contribution of the different immune cell subsets in the circulation and within the tumour is poorly understood. MATERIALS AND METHODS: To elucidate the role of the different cell subsets in anti-tumour responses elicited by ICB, we performed single-cell analysis of the transcriptome and surface proteome of paired pre- and early on-treatment metastatic melanoma tumour biopsies and matched peripheral blood mononuclear cell samples. We next compared the survival of metastatic melanoma patients treated with ICB according to the abundance of pre-treatment tumour-infiltrating B cell clonotypes. RESULTS: We identified cell clusters associated with disease control or progression, defined differential expression of biological pathways likely involved in the immune awakening against the tumour and examined how cell-cell communication patterns between the tumour cell subsets change during treatment. Furthermore, we discovered that B cells (immunoglobulin expression and abundance of B cell clonotypes) discriminate the clinical response after ICB and propose that B cells likely contribute to anti-tumour immunity by antigen presentation through major histocompatibility complex molecules. Finally, we demonstrated that the abundance of tumour-infiltrating B cell clonotypes at baseline identifies two distinct risk groups, a finding that we confirmed in an independent cohort. CONCLUSIONS: Our exploratory translational study provides new insights on the mechanistic role of B cells in anti-melanoma immunity during treatment with ICB. Additionally, we support pre-treatment B cell tumour infiltration as a promising prognostic biomarker to be further validated as a tool for clinical risk stratification.


Assuntos
Leucócitos Mononucleares , Melanoma , Humanos , Melanoma/patologia , Linfócitos B , Transcriptoma , Estudos de Coortes , Imunoterapia
3.
Nat Med ; 28(3): 535-544, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228751

RESUMO

The composition of the gut microbiome has been associated with clinical responses to immune checkpoint inhibitor (ICI) treatment, but there is limited consensus on the specific microbiome characteristics linked to the clinical benefits of ICIs. We performed shotgun metagenomic sequencing of stool samples collected before ICI initiation from five observational cohorts recruiting ICI-naive patients with advanced cutaneous melanoma (n = 165). Integrating the dataset with 147 metagenomic samples from previously published studies, we found that the gut microbiome has a relevant, but cohort-dependent, association with the response to ICIs. A machine learning analysis confirmed the link between the microbiome and overall response rates (ORRs) and progression-free survival (PFS) with ICIs but also revealed limited reproducibility of microbiome-based signatures across cohorts. Accordingly, a panel of species, including Bifidobacterium pseudocatenulatum, Roseburia spp. and Akkermansia muciniphila, associated with responders was identified, but no single species could be regarded as a fully consistent biomarker across studies. Overall, the role of the human gut microbiome in ICI response appears more complex than previously thought, extending beyond differing microbial species simply present or absent in responders and nonresponders. Future studies should adopt larger sample sizes and take into account the complex interplay of clinical factors with the gut microbiome over the treatment course.


Assuntos
Microbioma Gastrointestinal , Melanoma , Neoplasias Cutâneas , Microbioma Gastrointestinal/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Reprodutibilidade dos Testes , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética
4.
Eur J Cancer ; 162: 11-21, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952479

RESUMO

BACKGROUND: Precision immuno-oncology approaches are needed to improve cancer care. We recently demonstrated that in patients with metastatic melanoma, an increase of clonality or diversity of the T cell receptor (TCR) repertoire of peripheral T cells following one cycle of immunotherapy is coincident with response to immune-checkpoint blockade (ICB). We also identified a subset of peripheral CD8+ immune-effector memory T cells (TIE cells) whose expansion was associated with response to ICB and increased overall survival. To improve our understanding of peripheral T cell dynamics, we examined the clinical correlates associated with these immune signatures. METHODS: Fifty patients with metastatic melanoma treated with first-line anti-PD-1 ICB were included. We analysed TCR repertoire and peripheral TIE cell dynamics by age before treatment (T0) and after the first cycle of treatment at week 3 (W3). RESULTS: We observed a correlation between TIE abundance and age at T0 (r = 0.40), which reduced following treatment at W3 (r = 0.07). However, at W3, we observed two significantly opposing patterns (p = 0.03) of TCR repertoire rearrangement in patients who responded to treatment, with patients ≥70 years of age showing an increase in TCR clonality and patients <70 years of age showing an increase in TCR diversity. CONCLUSIONS: We demonstrate that immunotherapy-induced immune-awakening patterns in patients with melanoma are age-related and may impact patient response to ICB, and thus have implications for biomarker development and planning of personalised therapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Idoso , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Recém-Nascido , Melanoma/tratamento farmacológico , Receptores de Antígenos de Linfócitos T
5.
Nat Commun ; 12(1): 4098, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215730

RESUMO

Tumor infiltration by T cells is paramount for effective anti-cancer immune responses. We hypothesized that the T cell receptor (TCR) repertoire of tumor infiltrating T lymphocytes could therefore be indicative of the functional state of these cells and determine disease course at different stages in cancer progression. Here we show that the diversity of the TCR of tumor infiltrating T cell at baseline is prognostic in various cancers, whereas the TCR clonality of T cell infiltrating metastatic melanoma pre-treatment is predictive for activity and efficacy of PD1 blockade immunotherapy.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Biópsia , Estudos de Coortes , Feminino , Humanos , Imunoterapia , Masculino , Melanoma/patologia , Melanoma/terapia , Pessoa de Meia-Idade , Prognóstico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Taxa de Sobrevida
7.
Br J Cancer ; 125(4): 470-472, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33824477

RESUMO

In 1967, Sandy Posey pronounced that sunglasses are essential beachwear ( https://www.youtube.com/watch?v=4HVBEb-GA1Y ). Now, whole-genome sequencing reveals that ultraviolet radiation (UVR) can contribute to melanomas in the iris and conjunctiva, data that provide a molecular explanation for why it is important to protect our eyes from exposure to UVR.


Assuntos
Neoplasias Oculares/prevenção & controle , Melanoma/prevenção & controle , Raios Ultravioleta/efeitos adversos , Neoplasias Oculares/etiologia , Neoplasias Oculares/genética , Dispositivos de Proteção dos Olhos , Redes Reguladoras de Genes/efeitos da radiação , Humanos , Melanoma/etiologia , Melanoma/genética , Sequenciamento Completo do Genoma
8.
Nat Commun ; 12(1): 259, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431815

RESUMO

Although identified as the key environmental driver of common cutaneous melanoma, the role of ultraviolet radiation (UVR)-induced DNA damage in mucosal melanoma is poorly defined. We analyze 10 mucosal melanomas of conjunctival origin by whole genome sequencing and our data shows a predominance of UVR-associated single base substitution signature 7 (SBS7) in the majority of the samples. Our data shows mucosal melanomas with SBS7 dominance have similar genomic patterns to cutaneous melanomas and therefore this subset should not be excluded from treatments currently used for common cutaneous melanoma.


Assuntos
Melanoma/genética , Mucosa/patologia , Mutação/genética , Neoplasias Cutâneas/genética , Raios Ultravioleta , Adulto , Idoso , Idoso de 80 Anos ou mais , Túnica Conjuntiva/patologia , Dano ao DNA , Feminino , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade
10.
ESMO Open ; 5(4)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817058

RESUMO

BACKGROUND: Combination treatments targeting the MEK-ERK pathway and checkpoint inhibitors have improved overall survival in melanoma. Resistance to treatment especially in the brain remains challenging, and rare disease subtypes such as acral melanoma are not typically included in trials. Here we present analyses from longitudinal sampling of a patient with metastatic acral melanoma that became resistant to successive immune and targeted therapies. METHODS: We performed whole-exome sequencing and RNA sequencing on an acral melanoma that progressed on successive immune (nivolumab) and targeted (dabrafenib) therapy in the brain to identify resistance mechanisms. In addition, we performed growth inhibition assays, reverse phase protein arrays and immunoblotting on patient-derived cell lines using dabrafenib in the presence or absence of cerebrospinal fluid (CSF) in vitro. Patient-derived xenografts were also developed to analyse response to dabrafenib. RESULTS: Immune escape following checkpoint blockade was not due to loss of tumour cell recognition by the immune system or low neoantigen burden, but was associated with distinct changes in the microenvironment. Similarly, resistance to targeted therapy was not associated with acquired mutations but upregulation of the AKT/phospho-inositide 3-kinase pathway in the presence of CSF. CONCLUSION: Heterogeneous tumour interactions within the brain microenvironment enable progression on immune and targeted therapies and should be targeted in salvage treatments.


Assuntos
Melanoma , Neoplasias Cutâneas , Encéfalo , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular , Microambiente Tumoral
11.
Nat Commun ; 11(1): 853, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051401

RESUMO

Although immune checkpoint inhibitors (ICIs) have achieved unprecedented results in melanoma, the biological features of the durable responses initiated by these drugs remain unknown. Here we show the genetic and phenotypic changes induced by treatment with programmed cell death-1 (PD-1) blockade in a genetically engineered mouse model of melanoma driven by oncogenic BRAF. In this controlled system anti-PD-1 treatment yields responses in ~35% of the tumors, and prolongs survival in ~27% of the animals. We identify increased stroma remodeling and reduced expression of proliferation markers as features associated with prolonged response. These traits are corroborated in two independent early on-treatment anti-PD-1 melanoma patient cohorts. These insights into the biological responses of tumors to ICI provide a strategy for identification of durable response early during the course of treatment and could improve patient stratification for checkpoint inhibitory drugs.


Assuntos
Divisão Celular/fisiologia , Melanoma/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Células Estromais/metabolismo , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Proliferação de Células , Modelos Animais de Doenças , Exoma/genética , Feminino , Humanos , Imunoterapia , Camundongos
12.
Nat Cancer ; 1(2): 210-221, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32110781

RESUMO

Our understanding of how checkpoint inhibitors (CPI) affect T cell evolution is incomplete, limiting our ability to achieve full clinical benefit from these drugs. Here we analyzed peripheral T cell populations after one cycle of CPI and identified a dynamic awakening of the immune system revealed by T cell evolution in response to treatment. We sequenced T cell receptors (TCR) in plasma cell-free DNA (cfDNA) and peripheral blood mononuclear cells (PBMC) and performed phenotypic analysis of peripheral T cell subsets from metastatic melanoma patients treated with CPI. We found that early peripheral T cell turnover and TCR repertoire dynamics identified which patients would respond to treatment. Additionally, the expansion of a subset of immune-effector peripheral T cells we call TIE cells correlated with response. These events are prognostic and occur within 3 weeks of starting immunotherapy, raising the potential for monitoring patients responses using minimally invasive liquid biopsies."


Assuntos
Leucócitos Mononucleares , Melanoma , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Melanoma/terapia , Receptores de Antígenos de Linfócitos T/genética
13.
Nat Commun ; 10(1): 3151, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320631

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Eur Urol Oncol ; 2(1): 1-11, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30929837

RESUMO

BACKGROUND: The prostate cancer (PCa) diagnostic pathway is undergoing a radical change with the introduction of multiparametric magnetic resonance imaging (mpMRI), genomic testing, and different prostate biopsy techniques. It has been proposed that these tests should be used in a sequential manner to optimise risk stratification. OBJECTIVE: To characterise the genomic, epigenomic, and transcriptomic features of mpMRI-visible and -nonvisible PCa in clinically localised disease. DESIGN, SETTING, AND PARTICIPANTS: Multicore analysis of fresh prostate tissue sampled immediately after radical prostatectomy was performed for intermediate- to high-risk PCa. INTERVENTION: Low-pass whole-genome, exome, methylation, and transcriptome profiling of patient tissue cores taken from microscopically benign and cancerous areas in the same prostate. Circulating free and germline DNA was assessed from the blood of five patients. OUTCOME MEASUREMENT AND STATISTICAL ANALYSIS: Correlations between preoperative mpMRI and genomic characteristics of tumour and benign prostate samples were assessed. Gene profiles for individual tumour cores were correlated with existing genomic classifiers currently used for prognostication. RESULTS AND LIMITATIONS: A total of 43 prostate cores (22 tumour and 21 benign) were profiled from six whole prostate glands. Of the 22 tumour cores, 16 were tumours visible and six were tumours nonvisible on mpMRI. Intratumour genomic, epigenomic, and transcriptomic heterogeneity was found within mpMRI-visible lesions. This could potentially lead to misclassification of patients using signatures based on copy number or RNA expression. Moreover, three of the six cores obtained from mpMRI-nonvisible tumours harboured one or more genetic alterations commonly observed in metastatic castration-resistant PCa. No circulating free DNA alterations were found. Limitations include the small cohort size and lack of follow-up. CONCLUSIONS: Our study supports the continued use of systematic prostate sampling in addition to mpMRI, as avoidance of systematic biopsies in patients with negative mpMRI may mean that clinically significant tumours harbouring genetic alterations commonly seen in metastatic PCa are missed. Furthermore, there is inconsistency in individual genomics when genomic classifiers are applied. PATIENT SUMMARY: Our study shows that tumour heterogeneity within prostate tumours visible on multiparametric magnetic resonance imaging (mpMRI) can lead to misclassification of patients if only one core is used for genomic analysis. In addition, some cancers that were missed by mpMRI had genomic aberrations that are commonly seen in advanced metastatic prostate cancer. Avoiding biopsies in mpMRI-negative cases may mean that such potentially lethal cancers are missed.


Assuntos
Genômica/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/genética
15.
Nat Med ; 25(2): 221-224, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510256

RESUMO

The melanoma genome is dominated by ultraviolet radiation (UVR)-induced mutations. Their relevance in disease progression is unknown. Here we classify melanomas by mutation signatures and identify ten recurrently mutated UVR signature genes that predict patient survival. We validate these findings in primary human melanomas; in mice we show that this signature is imprinted by short-wavelength UVR and that four exposures to UVR are sufficient to accelerate melanomagenesis.


Assuntos
Dano ao DNA , Melanoma/patologia , Raios Ultravioleta , Animais , Humanos , Camundongos , Prognóstico , Análise de Sobrevida
16.
Nat Med ; 25(2): 350, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30560902

RESUMO

In the version of this article originally published, Extended Data Fig. 3 was incorrect. A duplicate of Extended Data Fig. 4 was uploaded in place of Extended Data Fig. 3. Extended Data Fig. 3 has now been uploaded. The error has been fixed in the PDF and HTML versions of this article.

17.
Histopathology ; 71(6): 943-950, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28741688

RESUMO

AIMS: Because the term 'naevoid melanoma' has variable clinical and pathological interpretations, we aimed to clarify the features of melanomas referred to as naevoid. METHODS AND RESULTS: A review was undertaken of 102 melanomas diagnosed histopathologically as naevoid melanomas and ascertained by European Organization for Research and Treatment of Cancer Melanoma Group Subcommittee pathologists from their records. We found these could be classified morphologically into three groups. Thirteen melanomas were overlying genuine naevi and were therefore excluded. Of the 89 melanomas considered to be naevoid, 11 presented clinically as exophytic papillomatous nodules with little junctional component and composed of small atypical cells showing numerous mitoses and no change with depth; we termed these 'papillomatous naevoid' melanomas. The other 78 were flat or only slightly raised, and had a superficial spreading melanoma-like component with maturation to a small cell, but still an atypical, dermal component; we termed these 'maturing naevoid' melanomas. We showed that papillomatous and maturing naevoid melanomas also have differing immunochemical profiles. Preliminary clinical follow-up suggested different outcomes for these two naevoid melanoma types. CONCLUSIONS: Melanomas that have been classified as naevoid melanomas comprise two types with distinct clinical, histopathological and immunohistochemical features that may also be prognostically significant.


Assuntos
Melanoma/patologia , Papiloma/patologia , Neoplasias Cutâneas/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Masculino , Melanoma/classificação , Melanoma/diagnóstico , Pessoa de Meia-Idade , Nevo Pigmentado/patologia , Papiloma/classificação , Papiloma/diagnóstico , Prognóstico , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/diagnóstico , Adulto Jovem
18.
Nat Commun ; 8: 14909, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28416796

RESUMO

Lysyl oxidase (LOX) remodels the tumour microenvironment by cross-linking the extracellular matrix. LOX overexpression is associated with poor cancer outcomes. Here, we find that LOX regulates the epidermal growth factor receptor (EGFR) to drive tumour progression. We show that LOX regulates EGFR by suppressing TGFß1 signalling through the secreted protease HTRA1. This increases the expression of Matrilin2 (MATN2), an EGF-like domain-containing protein that traps EGFR at the cell surface to facilitate its activation by EGF. We describe a pharmacological inhibitor of LOX, CCT365623, which disrupts EGFR cell surface retention and delays the growth of primary and metastatic tumour cells in vivo. Thus, we show that LOX regulates EGFR cell surface retention to drive tumour progression, and we validate the therapeutic potential of inhibiting this pathway with the small molecule inhibitor CCT365623.


Assuntos
Membrana Celular/metabolismo , Progressão da Doença , Receptores ErbB/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Aminopropionitrilo/química , Aminopropionitrilo/farmacologia , Animais , Técnicas Biossensoriais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cães , Ativação Enzimática , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Proteínas Matrilinas/metabolismo , Camundongos , Modelos Biológicos , Metástase Neoplásica , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
19.
Cancer Discov ; 6(3): 286-99, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26715644

RESUMO

UNLABELLED: Targeted therapies and immunotherapies have transformed melanoma care, extending median survival from ∼9 to over 25 months, but nevertheless most patients still die of their disease. The aim of precision medicine is to tailor care for individual patients and improve outcomes. To this end, we developed protocols to facilitate individualized treatment decisions for patients with advanced melanoma, analyzing 364 samples from 214 patients. Whole exome sequencing (WES) and targeted sequencing of circulating tumor DNA (ctDNA) allowed us to monitor responses to therapy and to identify and then follow mechanisms of resistance. WES of tumors revealed potential hypothesis-driven therapeutic strategies for BRAF wild-type and inhibitor-resistant BRAF-mutant tumors, which were then validated in patient-derived xenografts (PDX). We also developed circulating tumor cell-derived xenografts (CDX) as an alternative to PDXs when tumors were inaccessible or difficult to biopsy. Thus, we describe a powerful technology platform for precision medicine in patients with melanoma. SIGNIFICANCE: Although recent developments have revolutionized melanoma care, most patients still die of their disease. To improve melanoma outcomes further, we developed a powerful precision medicine platform to monitor patient responses and to identify and validate hypothesis-driven therapies for patients who do not respond, or who develop resistance to current treatments.


Assuntos
Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Melanoma/diagnóstico , Melanoma/tratamento farmacológico , Medicina de Precisão , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biópsia , Análise por Conglomerados , Gerenciamento Clínico , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Terapia de Alvo Molecular , Mutação , Estadiamento de Neoplasias , Reprodutibilidade dos Testes , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Oncol ; 10(1): 73-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26365896

RESUMO

BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting.


Assuntos
Glutamina/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA