Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
ACS Nano ; 18(10): 7411-7423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412617

RESUMO

The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.


Assuntos
Polímeros , Polímeros/química , Adsorção , Propriedades de Superfície
3.
Nat Commun ; 14(1): 5674, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37704596

RESUMO

Ever since its introduction by Ludwig Boltzmann, the ergodic hypothesis became a cornerstone analytical concept of equilibrium thermodynamics and complex dynamic processes. Examples of its relevance range from modeling decision-making processes in brain science to economic predictions. In condensed matter physics, ergodicity remains a concept largely investigated via theoretical and computational models. Here, we demonstrate the direct real-space observation of ergodicity transitions in a vertex-frustrated artificial spin ice. Using synchrotron-based photoemission electron microscopy we record thermally-driven moment fluctuations as a function of temperature, allowing us to directly observe transitions between ergodicity-breaking dynamics to system freezing, standing in contrast to simple trends observed for the temperature-dependent vertex populations, all while the entropy features arise as a function of temperature. These results highlight how a geometrically frustrated system, with thermodynamics strictly adhering to local ice-rule constraints, runs back-and-forth through periods of ergodicity-breaking dynamics. Ergodicity breaking and the emergence of memory is important for emergent computation, particularly in physical reservoir computing. Our work serves as further evidence of how fundamental laws of thermodynamics can be experimentally explored via real-space imaging.

4.
ACS Appl Mater Interfaces ; 15(1): 2020-2029, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534025

RESUMO

We report a method for the directed self-assembly (DSA) of block copolymers (BCPs) in which a first BCP film deploys homopolymer brushes, or "inks", that sequentially graft onto the substrate's surface via the interpenetration of polymer molecules during the thermal annealing of the polymer film on top of existing polymer brushes. By selecting polymer "inks" with the desired chemistry and appropriate relative molecular weights, it is possible to use brush interpenetration as a powerful technique to generate self-registered chemical contrast patterns at the same frequency as that of the domains of the BCP. The result is a process with a higher tolerance to dimensional and chemical imperfections in the guiding patterns, which we showcase by implementing DSA using homopolymer brushes for the guiding features as opposed to more robust cross-linkable mats. We find that the use of "inks" does not compromise the line width roughness, and the quality of the DSA as a lithographic mask is verified by implementing a robust "dry lift-off" pattern transfer.

5.
Nature ; 608(7924): 692-698, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35768016

RESUMO

Single-aperture cavities are a key component of lasers that are instrumental for the amplification and emission of a single light mode. However, the appearance of high-order transverse modes as the size of the cavities increases has frustrated efforts to scale-up cavities while preserving single-mode operation since the invention of the laser six decades ago1-8. A suitable physical mechanism that allows single-mode lasing irrespective of the cavity size-a 'scale invariant' cavity or laser-has not been identified yet. Here we propose and demonstrate experimentally that open-Dirac electromagnetic cavities with linear dispersion-which in our devices are realized by a truncated photonic crystal arranged in a hexagonal pattern-exhibit unconventional scaling of losses in reciprocal space, leading to single-mode lasing that is maintained as the cavity is scaled up in size. The physical origin of this phenomenon lies in the convergence of the complex part of the free spectral range in open-Dirac cavities towards a constant governed by the loss rates of distinct Bloch bands, whereas for common cavities it converges to zero as the size grows, leading to inevitable multimode emission. An unconventional flat-envelope fundamental mode locks all unit cells in the cavity in phase, leading to single-mode lasing. We name such sources Berkeley surface-emitting lasers (BerkSELs) and demonstrate that their far-field corresponds to a topological singularity of charge two, in agreement with our theory. Open-Dirac cavities unlock avenues for light-matter interaction and cavity quantum electrodynamics.

6.
Commun Biol ; 5(1): 397, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484403

RESUMO

Single-cells grow by increasing their biomass and size. Here, we report that while mass and size accumulation rates of single Escherichia coli cells are exponential, their density and, thus, the levels of macromolecular crowding fluctuate during growth. As such, the average rates of mass and size accumulation of a single cell are generally not the same, but rather cells differentiate into increasing one rate with respect to the other. This differentiation yields a density homeostasis mechanism that we support mathematically. Further, we observe that density fluctuations can affect the reproduction rates of single cells, suggesting a link between the levels of macromolecular crowding with metabolism and overall population fitness. We detail our experimental approach and the "invisible" microfluidic arrays that enabled increased precision and throughput. Infections and natural communities start from a few cells, thus, emphasizing the significance of density-fluctuations when taking non-genetic variability into consideration.


Assuntos
Escherichia coli , Reprodução , Escherichia coli/metabolismo , Homeostase , Substâncias Macromoleculares/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(12): e2122085119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35294279

RESUMO

Control over symmetry breaking in three-dimensional electromagnetic systems offers a pathway to tailoring their optical activity. We introduce fractured Pancharatnam­Berry-phase metasurface systems, in which a full-waveplate geometric phase metasurface is fractured into two half-waveplate-based metasurfaces and actively configured using shear displacement. Local relative rotations between stacked half-nanowaveplates within the metasurface system are transduced by shear displacement, leading to dynamic modulation of their collective geometric phase properties. We apply this concept to pairs of periodic Pancharatnam­Berry-phase metasurfaces and experimentally show that these systems support arbitrary and reconfigurable broadband circular birefringence response. High-speed circular birefringence modulation is demonstrated with modest shearing speeds, indicating the potential for these concepts to dynamically control polarization states with fast temporal responses. We anticipate that fractured geometric phase metasurface systems will serve as a nanophotonic platform that leverages systems-level symmetry breaking to enable active electromagnetic wave control.

8.
Microsyst Nanoeng ; 7: 40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567754

RESUMO

The combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.

9.
Nat Commun ; 12(1): 1562, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692363

RESUMO

Among topological solitons, magnetic skyrmions are two-dimensional particle-like objects with a continuous winding of the magnetization, and magnetic Hopfions are three-dimensional objects that can be formed from a closed loop of twisted skyrmion strings. Theoretical models suggest that magnetic Hopfions can be stabilized in frustrated or chiral magnetic systems, and target skymions can be transformed into Hopfions by adapting their perpendicular magnetic anisotropy, but their experimental verification has been elusive so far. Here, we present an experimental study of magnetic Hopfions that are created in Ir/Co/Pt multilayers shaped into nanoscale disks, known to host target skyrmions. To characterize three-dimensional spin textures that distinguish Hopfions from target skyrmions magnetic images are recorded with surface-sensitive X-ray photoemission electron microscopy and bulk-sensitive soft X-ray transmission microscopy using element-specific X-ray magnetic circular dichroism effects as magnetic contrast. These results could stimulate further investigations of Hopfions and their potential application in three-dimensional spintronics devices.

10.
Sci Rep ; 10(1): 20694, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244040

RESUMO

There are few materials that are broadly used for fabricating optical metasurfaces for visible light applications. Gallium phosphide (GaP) is a material that, due to its optical properties, has the potential to become a primary choice but due to the difficulties in fabrication, GaP thin films deposited on transparent substrates have never been exploited. In this article we report the design, fabrication, and characterization of three different amorphous GaP metasurfaces obtained through sputtering. Although the material properties can be further optimized, our results show the potential of this material for visible applications making it a viable alternative in the material selection for optical metasurfaces.

11.
Phys Rev Lett ; 125(26): 267203, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449705

RESUMO

We present a realization of highly frustrated planar triangular antiferromagnetism achieved in a quasi-three-dimensional artificial spin system consisting of monodomain Ising-type nanomagnets lithographically arranged onto a deep-etched silicon substrate. We demonstrate how the three-dimensional spin architecture results in the first direct observation of long-range ordered planar triangular antiferromagnetism, in addition to a highly disordered phase with short-range correlations, once competing interactions are perfectly tuned. Our work demonstrates how escaping two-dimensional restrictions can lead to new types of magnetically frustrated metamaterials.

12.
Nat Commun ; 10(1): 2652, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201310

RESUMO

Polaritons are widely investigated quasiparticles with fundamental and technological significance due to their unique properties. They have been studied most extensively in semiconductors when photons interact with various elementary excitations. However, other strongly coupled excitations demonstrate similar dynamics. Specifically, when magnon and phonon modes are coupled, a hybridized magnon-phonon quasiparticle can form. Here, we report on the direct observation of coupled magnon-phonon dynamics within a single thin nickel nanomagnet. We develop an analytic description to model the dynamics in two dimensions, enabling us to isolate the parameters influencing the frequency splitting. Furthermore, we demonstrate tuning of the magnon-phonon interaction into the strong coupling regime via the orientation of the applied magnetic field.

13.
Sci Rep ; 9(1): 2768, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808883

RESUMO

Materials for nanophotonic devices ideally combine ease of deposition, very high refractive index, and facile pattern formation through lithographic templating and/or etching. In this work, we present a scalable method for producing high refractive index WS2 layers by chemical conversion of WO3 synthesized via atomic layer deposition (ALD). These conformal nanocrystalline thin films demonstrate a surprisingly high index of refraction (n > 3.9), and structural fidelity compatible with lithographically defined features down to ~10 nm. Although this process yields highly polycrystalline films, the optical constants are in agreement with those reported for single crystal bulk WS2. Subsequently, we demonstrate three photonic structures - first, a two-dimensional hole array made possible by patterning and etching an ALD WO3 thin film before conversion, second, an analogue of the 2D hole array first patterned into fused silica before conformal coating and conversion, and third, a three-dimensional inverse opal photonic crystal made by conformal coating of a self-assembled polystyrene bead template. These results can be trivially extended to other transition metal dichalcogenides, thus opening new opportunities for photonic devices based on high refractive index materials.

14.
Sci Adv ; 5(2): eaav6380, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30783629

RESUMO

Magnetic monopoles, proposed as elementary particles that act as isolated magnetic south and north poles, have long attracted research interest as magnetic analogs to electric charge. In solid-state physics, a classical analog to these elusive particles has emerged as topological excitations within pyrochlore spin ice systems. We present the first real-time imaging of emergent magnetic monopole motion in a macroscopically degenerate artificial spin ice system consisting of thermally activated Ising-type nanomagnets lithographically arranged onto a pre-etched silicon substrate. A real-space characterization of emergent magnetic monopoles within the framework of Debye-Hückel theory is performed, providing visual evidence that these topological defects act like a plasma of Coulomb-type magnetic charges. In contrast to vertex defects in a purely two-dimensional artificial square ice, magnetic monopoles are free to evolve within a divergence-free vacuum, a magnetic Coulomb phase, for which features in the form of pinch-point singularities in magnetic structure factors are observed.

15.
Nano Lett ; 18(12): 7428-7434, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30248262

RESUMO

We use nano disk arrays with square and honeycomb symmetry to investigate magnetic phases and spin correlations of XY dipolar systems at the micro scale. Utilizing magnetization sensitive X-ray photoemission electron microscopy, we probe magnetic ground states and the "order-by-disorder" phenomenon predicted 30 years ago. We observe the antiferromagnetic striped ground state in square lattices, and 6-fold symmetric structures, including trigonal vortex lattices and disordered floating vortices, in the honeycomb lattice. The spin frustration in the honeycomb lattice causes a phase transition from a long-range ordered locked phase over a floating phase with quasi long-range order and indications of a Berezinskii-Thouless-Kosterlitz-like character, to the thermally excited paramagnetic state. Absent spatial correlation and quasi periodic switching of isolated vortices in the quasi long-range ordered phase suggest a degeneracy of the vortex circulation.

16.
Sci Rep ; 7(1): 17645, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247228

RESUMO

A novel method to realizing printed active photonic devices was developed using nanoimprint lithography (NIL), combining a printable high-refractive index material and colloidal CdSe/CdS quantum dots (QDs) for applications in the visible region. Active media QDs were applied in two different ways: embedded inside a printable high-refractive index matrix to form an active printable hybrid nanocomposite, and used as a uniform coating on top of printed photonic devices. As a proof-of-demonstration for printed active photonic devices, two-dimensional (2-D) photonic crystals as well as 1D and 2D photonic nanocavities were successfully fabricated following a simple reverse-nanoimprint process. We observed enhanced photoluminescence from the 2D photonic crystal and the 1D nanocavities. Outstandingly, the process presented in this study is fully compatible with large-scale manufacturing where the patterning areas are only limited by the size of the corresponding mold. This work shows that the integration of active media and functional materials is a promising approach to the realization of integrated photonics for visible light using high throughput technologies. We believe that this work represents a powerful and cost-effective route for the development of numerous nanophotonic structures and devices that will lead to the emergence of new applications.

17.
Nat Commun ; 8(1): 2138, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233974

RESUMO

The original version of this article contained an error in the legend to Figure 4. The yellow scale bar should have been defined as '~600 nm', not '~600 µm'. This has now been corrected in both the PDF and HTML versions of the article.

18.
Nano Lett ; 17(12): 7702-7709, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29131965

RESUMO

We investigate in situ ion diffusion in vanadium dioxide (VO2) nanowires (NWs) by using photocurrent imaging. Alkali metal ions are injected into a NW segment via ionic liquid gating and are shown to diffuse along the NW axis. The visualization of ion diffusion is realized by spatially resolved photocurrent measurements, which detect the charge carrier density change associated with the ion incorporation. Diffusion constants are determined to be on the order of 10-10 cm2/s for both Li+ and Na+ ions at room temperature, while H+ diffuses much slower. The ion diffusion is also found to occur mainly at the surface of the NWs, as metal contacts can effectively block the ion diffusion. This novel method of visualizing ion distribution is expected to be applied to study ion diffusion in a broad range of materials, providing key insights on phase transition electronics and energy storage applications.

19.
Nat Commun ; 8(1): 995, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042556

RESUMO

Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we provide a first look into an artificial frustrated system, the dipolar trident lattice, where the balance of competing interactions between nearest-neighbor magnetic moments can be directly controlled, thus allowing versatile tuning of geometrical frustration and manipulation of ground state configurations. Our findings not only provide the basis for future studies on the low-temperature physics of the dipolar trident lattice, but also demonstrate how this frustration-by-design concept can deliver magnetically frustrated metamaterials.Artificial magnetic nanostructures enable the study of competing frustrated interactions with more control over the system parameters than is possible in magnetic materials. Farhan et al. present a two-dimensional lattice geometry where the frustration can be controlled by tuning the unit cell parameters.

20.
Sci Rep ; 7(1): 2286, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28536465

RESUMO

Metasurfaces have facilitated the replacement of conventional optical elements with ultrathin and planar photonic structures. Previous designs of metasurfaces were limited to small deflection angles and small ranges of the angle of incidence. Here, we have created two types of Si-based metasurfaces to steer visible light to a large deflection angle. These structures exhibit high diffraction efficiencies over a broad range of angles of incidence. We have demonstrated metasurfaces working both in transmission and reflection modes based on conventional thin film silicon processes that are suitable for the large-scale fabrication of high-performance devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA