Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Comput Biol Chem ; 110: 108080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643609

RESUMO

The physical interactions between proteins are largely determined by the structural properties at their binding interfaces. It was found that the binding interfaces in distinctive protein complexes are highly similar. The structural properties underlying different binding interfaces could be further captured by artificial intelligence. In order to test this hypothesis, we broke protein-protein binding interfaces into pairs of interacting fragments. We employed a generative model to encode these interface fragment pairs in a low-dimensional latent space. After training, new conformations of interface fragment pairs were generated. We found that, by only using a small number of interface fragment pairs that were generated by artificial intelligence, we were able to guide the assembly of protein complexes into their native conformations. These results demonstrate that the conformational space of fragment pairs at protein-protein binding interfaces is highly degenerate. Features in this degenerate space can be well characterized by artificial intelligence. In summary, our machine learning method will be potentially useful to search for and predict the conformations of unknown protein-protein interactions.


Assuntos
Inteligência Artificial , Ligação Proteica , Proteínas , Proteínas/química , Proteínas/metabolismo , Conformação Proteica , Modelos Moleculares , Sítios de Ligação
2.
Microb Pathog ; 178: 106052, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906439

RESUMO

This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error. The full Elsevier Policy on Article Withdrawal can be found at (https://www.elsevier.com/about/policies/article-withdrawal).

3.
Comput Biol Chem ; 103: 107823, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36682326

RESUMO

Proteins in the tumor necrosis factor (TNF) superfamily (TNFSF) regulate diverse cellular processes by interacting with their receptors in the TNF receptor (TNFR) superfamily (TNFRSF). Ligands and receptors in these two superfamilies form a complicated network of interactions, in which the same ligand can bind to different receptors and the same receptor can be shared by different ligands. In order to study these interactions on a systematic level, a TNFSF-TNFRSF interactome was constructed in this study by searching the database which consists of both experimentally measured and computationally predicted protein-protein interactions (PPIs). The interactome contains a total number of 194 interactions between 18 TNFSF ligands and 29 TNFRSF receptors in human. We modeled the structure for each ligand-receptor interaction in the network. Their binding affinities were further computationally estimated based on modeled structures. Our computational outputs, which are all publicly accessible, serve as a valuable addition to the currently limited experimental resources to study TNF-mediated cell signaling.


Assuntos
Receptores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Humanos , Ligantes , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/metabolismo
4.
Commun Biol ; 5(1): 228, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277586

RESUMO

The interaction between TNFα and TNFR1 is essential in maintaining tissue development and immune responses. While TNFR1 is a cell surface receptor, TNFα exists in both soluble and membrane-bound forms. Interestingly, it was found that the activation of TNFR1-mediated signaling pathways is preferentially through the soluble form of TNFα, which can also induce the clustering of TNFR1 on plasma membrane of living cells. We developed a multiscale simulation framework to compare receptor clustering induced by soluble and membrane-bound ligands. Comparing with the freely diffusive soluble ligands, we hypothesize that the conformational dynamics of membrane-bound ligands are restricted, which affects the clustering of ligand-receptor complexes at cell-cell interfaces. Our simulation revealed that only small clusters can form if TNFα is bound on cell surface. In contrast, the clustering triggered by soluble TNFα is more dynamic, and the size of clusters is statistically larger. We therefore demonstrated the impact of membrane-bound ligand on dynamics of receptor clustering. Moreover, considering that larger TNFα-TNFR1 clusters is more likely to provide spatial platform for downstream signaling pathway, our studies offer new mechanistic insights about why the activation of TNFR1-mediated signaling pathways is not preferred by membrane-bound form of TNFα.


Assuntos
Transdução de Sinais , Membrana Celular/metabolismo , Ligantes
5.
J Proteome Res ; 21(2): 349-359, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978816

RESUMO

The interactions between ectodomains of cell surface proteins are vital players in many important cellular processes, such as regulating immune responses, coordinating cell differentiation, and shaping neural plasticity. However, while the construction of a large-scale protein interactome has been greatly facilitated by the development of high-throughput experimental techniques, little progress has been made to support the discovery of extracellular interactome for cell surface proteins. Harnessed by the recent advances in computational modeling of protein-protein interactions, here we present a structure-based online database for the extracellular interactome of cell surface proteins in humans, called EXCESP. The database contains both experimentally determined and computationally predicted interactions among all type-I transmembrane proteins in humans. All structural models for these interactions and their binding affinities were further computationally modeled. Moreover, information such as expression levels of each protein in different cell types and its relation to various signaling pathways from other online resources has also been integrated into the database. In summary, the database serves as a valuable addition to the existing online resources for the study of cell surface proteins. It can contribute to the understanding of the functions of cell surface proteins in the era of systems biology.


Assuntos
Proteínas de Membrana , Biologia de Sistemas , Biologia Computacional/métodos , Humanos , Proteínas de Membrana/genética , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais
6.
Mol Immunol ; 139: 76-86, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455212

RESUMO

The activation of T cells is triggered by the interactions of T cell receptors (TCRs) with their epitopes, which are peptides presented by major histocompatibility complex (MHC) on the surfaces of antigen presenting cells (APC). While each TCR can only recognize a specific subset from a large repertoire of peptide-MHC (pMHC) complexes, it is very often that peptides in this subset share little sequence similarity. This is known as the specificity and cross-reactivity of T cells, respectively. The binding affinities between different types of TCRs and pMHC are the major driving force to shape this specificity and cross-reactivity in T cell recognition. The binding affinities, furthermore, are determined by the sequence and structural properties at the interfaces between TCRs and pMHC. Fortunately, a wealth of data on binding and structures of TCR-pMHC interactions becomes publicly accessible in online resources, which offers us the opportunity to develop a random forest classifier for predicting the binding affinities between TCR and pMHC based on the structure of their complexes. Specifically, the structure and sequence of a given complex were projected onto a high-dimensional feature space as the input of the classifier, which was then trained by a large-scale benchmark dataset. Based on the cross-validation results, we found that our machine learning model can predict if the binding affinity of a given TCR-pMHC complex is stronger or weaker than a predefined threshold with an overall accuracy approximately around 75 %. The significance of our prediction was estimated by statistical analysis. Moreover, more than 60 % of binding affinities in the ATLAS database can be successfully classified into groups within the range of 2 kcal/mol. Additionally, we show that TCR-pMHC complexes with strong binding affinity prefer hydrophobic interactions between amino acids with large aromatic rings instead of electrostatic interactions. Our results therefore provide insights to design engineered TCRs which enhance the specificity for their targeted epitopes. Taken together, this method can serve as a useful addition to a suite of existing approaches which study binding between TCR and pMHC.


Assuntos
Ativação Linfocitária/imunologia , Aprendizado de Máquina , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Humanos , Ligação Proteica
7.
BMC Bioinformatics ; 22(1): 408, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404340

RESUMO

BACKGROUND: Proteins form various complexes to carry out their versatile functions in cells. The dynamic properties of protein complex formation are mainly characterized by the association rates which measures how fast these complexes can be formed. It was experimentally observed that the association rates span an extremely wide range with over ten orders of magnitudes. Identification of association rates within this spectrum for specific protein complexes is therefore essential for us to understand their functional roles. RESULTS: To tackle this problem, we integrate physics-based coarse-grained simulations into a neural-network-based classification model to estimate the range of association rates for protein complexes in a large-scale benchmark set. The cross-validation results show that, when an optimal threshold was selected, we can reach the best performance with specificity, precision, sensitivity and overall accuracy all higher than 70%. The quality of our cross-validation data has also been testified by further statistical analysis. Additionally, given an independent testing set, we can successfully predict the group of association rates for eight protein complexes out of ten. Finally, the analysis of failed cases suggests the future implementation of conformational dynamics into simulation can further improve model. CONCLUSIONS: In summary, this study demonstrated that a new modeling framework that combines biophysical simulations with bioinformatics approaches is able to identify protein-protein interactions with low association rates from those with higher association rates. This method thereby can serve as a useful addition to a collection of existing experimental approaches that measure biomolecular recognition.


Assuntos
Biologia Computacional , Proteínas , Simulação por Computador , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
8.
Arch Biochem Biophys ; 710: 109001, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352244

RESUMO

The enzyme cGAS functions as a sensor that recognizes the cytosolic DNA from foreign pathogen. The activation of the protein triggers the transcription of inflammatory genes, leading into the establishment of an antipathogen state. An interesting new discovery is that the detection of DNA by cGAS induced the formation of liquid-like droplets. However how cells regulate the formation of these droplets is still not fully understood. In order to unravel the molecular mechanism beneath the DNA-mediated phase separation of cGAS, we developed a polymer-based coarse-grained model which takes into accounts the basic structural organization in DNA and cGAS, as well as the binding properties between these biomolecules. This model was further integrated into a hybrid simulation algorithm. With this computational method, a multi-step kinetic process of aggregation between cGAS and DNA was observed. Moreover, we systematically tested the model under different concentrations and binding parameters. Our simulation results show that phase separation requires both cGAS dimerization and protein-DNA interactions, whereas polymers can be kinetically trapped in small aggregates under strong binding affinities. Additionally, we demonstrated that supramolecular assembly can be facilitated by increasing the number of functional modules in protein or DNA polymers, suggesting that multivalency and intrinsic disordered regions play positive roles in regulating phase separation. This is consistent to previous experimental evidences. Taken together, this is, to the best of our knowledge, the first computational model to study condensation of cGAS-DNA complexes. While the method can reach the timescale beyond the capability of atomic-level MD simulations, it still includes information about spatial arrangement of functional modules in biopolymers that is missing in the mean-field theory. Our work thereby adds a useful dimension to a suite of existing experimental and computational techniques to study the dynamics of phase separation in biological systems.


Assuntos
DNA/química , DNA/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Algoritmos , Simulação por Computador , Humanos , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Agregados Proteicos , Transdução de Sinais
9.
Biosensors (Basel) ; 11(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924783

RESUMO

In recent years, Synthetic Biology has emerged as a new discipline where functions that were traditionally performed by electronic devices are replaced by "cellular devices"; genetically encoded circuits constructed of DNA that are built from biological parts (aka bio-parts). The cellular devices can be used for sensing and responding to natural and artificial signals. However, a major challenge in the field is that the crosstalk between many cellular signaling pathways use the same signaling endogenous molecules that can result in undesired activation. To overcome this problem, we utilized a specific promoter that can activate genes with a natural, non-toxic ligand at a highly-induced transcription level with low background or undesirable off-target expression. Here we used the orphan aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that upon activation binds to specific AHR response elements (AHRE) of the Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) promoter. Flavonoids have been identified as AHR ligands. Data presented here show the successful creation of a synthetic gene "off" switch that can be monitored directly using an optical reporter gene. This is the first step towards bioengineering of a synthetic, nanoscale bio-part for constructing a sensor for molecular events.


Assuntos
Apigenina/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Técnicas Biossensoriais , Receptores de Hidrocarboneto Arílico/química , Bioengenharia , Citocromo P-450 CYP1A1 , Flavonoides , Humanos , Ligantes , Ligação Proteica , Transdução de Sinais
10.
Comput Struct Biotechnol J ; 19: 1620-1634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868599

RESUMO

The binding of cell surface receptors with extracellular ligands triggers distinctive signaling pathways, leading into the corresponding phenotypic variation of cells. It has been found that in many systems, these ligand-receptor complexes can further oligomerize into higher-order structures. This ligand-induced oligomerization of receptors on cell surfaces plays an important role in regulating the functions of cell signaling. The underlying mechanism, however, is not well understood. One typical example is proteins that belong to the tumor necrosis factor receptor (TNFR) superfamily. Using a generic multiscale simulation platform that spans from atomic to subcellular levels, we compared the detailed physical process of ligand-receptor oligomerization for two specific members in the TNFR superfamily: the complex formed between ligand TNFα and receptor TNFR1 versus the complex formed between ligand TNFß and receptor TNFR2. Interestingly, although these two systems share high similarity on the tertiary and quaternary structural levels, our results indicate that their oligomers are formed with very different dynamic properties and spatial patterns. We demonstrated that the changes of receptor's conformational fluctuations due to the membrane confinements are closely related to such difference. Consistent to previous experiments, our simulations also showed that TNFR can preassemble into dimers prior to ligand binding, while the introduction of TNF ligands induced higher-order oligomerization due to a multivalent effect. This study, therefore, provides the molecular basis to TNFR oligomerization and reveals new insights to TNFR-mediated signal transduction. Moreover, our multiscale simulation framework serves as a prototype that paves the way to study higher-order assembly of cell surface receptors in many other bio-systems.

11.
Integr Biol (Camb) ; 13(5): 109-120, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33893499

RESUMO

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is one of the most important transcription factors involved in the regulation of inflammatory signaling pathways. Inappropriate activation of these pathways has been linked to autoimmunity and cancers. Emerging experimental evidences have been showing the existence of elaborate spatial organizations for various molecular components in the pathways. One example is the scaffold protein tumor necrosis factor receptor associated factor (TRAF). While most TRAF proteins form trimeric quaternary structure through their coiled-coil regions, the N-terminal region of some members in the family can further be dimerized. This dimerization of TRAF trimers can drive them into higher-order clusters as a response to receptor stimulation, which functions as a spatial platform to mediate the downstream poly-ubiquitination. However, the molecular mechanism underlying the TRAF protein clustering and its functional impacts are not well-understood. In this article, we developed a hybrid simulation method to tackle this problem. The assembly of TRAF-based signaling platform at the membrane-proximal region is modeled with spatial resolution, while the dynamics of downstream signaling network, including the negative feedbacks through various signaling inhibitors, is simulated as stochastic chemical reactions. These two algorithms are further synchronized under a multiscale simulation framework. Using this computational model, we illustrated that the formation of TRAF signaling platform can trigger an oscillatory NF-κB response. We further demonstrated that the temporal patterns of downstream signal oscillations are closely regulated by the spatial factors of TRAF clustering, such as the geometry and energy of dimerization between TRAF trimers. In general, our study sheds light on the basic mechanism of NF-κB signaling pathway and highlights the functional importance of spatial regulation within the pathway. The simulation framework also showcases its potential of application to other signaling pathways in cells.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/metabolismo
12.
PLoS Comput Biol ; 17(3): e1008825, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684103

RESUMO

The activation and differentiation of T-cells are mainly directly by their co-regulatory receptors. T lymphocyte-associated protein-4 (CTLA-4) and programed cell death-1 (PD-1) are two of the most important co-regulatory receptors. Binding of PD-1 and CTLA-4 with their corresponding ligands programed cell death-ligand 1 (PD-L1) and B7 on the antigen presenting cells (APC) activates two central co-inhibitory signaling pathways to suppress T cell functions. Interestingly, recent experiments have identified a new cis-interaction between PD-L1 and B7, suggesting that a crosstalk exists between two co-inhibitory receptors and the two pairs of ligand-receptor complexes can undergo dynamic oligomerization. Inspired by these experimental evidences, we developed a coarse-grained model to characterize the assembling of an immune complex consisting of CLTA-4, B7, PD-L1 and PD-1. These four proteins and their interactions form a small network motif. The temporal dynamics and spatial pattern formation of this network was simulated by a diffusion-reaction algorithm. Our simulation method incorporates the membrane confinement of cell surface proteins and geometric arrangement of different binding interfaces between these proteins. A wide range of binding constants was tested for the interactions involved in the network. Interestingly, we show that the CTLA-4/B7 ligand-receptor complexes can first form linear oligomers, while these oligomers further align together into two-dimensional clusters. Similar phenomenon has also been observed in other systems of cell surface proteins. Our test results further indicate that both co-inhibitory signaling pathways activated by B7 and PD-L1 can be down-regulated by the new cis-interaction between these two ligands, consistent with previous experimental evidences. Finally, the simulations also suggest that the dynamic and the spatial properties of the immune complex assembly are highly determined by the energetics of molecular interactions in the network. Our study, therefore, brings new insights to the co-regulatory mechanisms of T cell activation.


Assuntos
Complexo Antígeno-Anticorpo , Células Apresentadoras de Antígenos , Linfócitos T , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/metabolismo , Células Apresentadoras de Antígenos/química , Células Apresentadoras de Antígenos/metabolismo , Antígenos B7/química , Antígenos B7/metabolismo , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/química , Antígeno CTLA-4/metabolismo , Biologia Computacional , Humanos , Simulação de Dinâmica Molecular , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica , Linfócitos T/química , Linfócitos T/metabolismo
13.
J Chem Phys ; 154(5): 055101, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557556

RESUMO

Binding of cell surface receptors with their extracellular ligands initiates various intracellular signaling pathways. However, our understanding of the cellular functions of these receptors is very limited due to the fact that in vivo binding between ligands and receptors has only been successfully measured in a very small number of cases. In living cells, receptors are anchored on surfaces of the plasma membrane, which undergoes thermal undulations. Moreover, it has been observed in various systems that receptors can be organized into oligomers prior to ligand binding. It is not well understood how these cellular factors play roles in regulating the dynamics of ligand-receptor interactions. Here, we tackled these problems by using a coarse-grained kinetic Monte Carlo simulation method. Using this method, we demonstrated that the membrane undulations cause a negative effect on ligand-receptor interactions. We further found that the preassembly of membrane receptors on the cell surface can not only accelerate the kinetics of ligand binding but also reduce the noises during the process. In general, our study highlights the importance of membrane environments in regulating the function of membrane receptors in cells. The simulation method can be potentially applied to specific receptor systems involved in cell signaling.


Assuntos
Simulação por Computador , Receptores de Superfície Celular/metabolismo , Membrana Celular/metabolismo , Ligantes , Método de Monte Carlo
14.
Biophys J ; 119(10): 2116-2126, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33113350

RESUMO

Scaffold proteins are central players in regulating the spatial-temporal organization of many important signaling pathways in cells. They offer physical platforms to downstream signaling proteins so that their transient interactions in a crowded and heterogeneous environment of cytosol can be greatly facilitated. However, most scaffold proteins tend to simultaneously bind more than one signaling molecule, which leads to the spatial assembly of multimeric protein complexes. The kinetics of these protein oligomerizations are difficult to quantify by traditional experimental approaches. To understand the functions of scaffold proteins in cell signaling, we developed a, to our knowledge, new hybrid simulation algorithm in which both spatial organization and binding kinetics of proteins were implemented. We applied this new technique to a simple network system that contains three molecules. One molecule in the network is a scaffold protein, whereas the other two are its binding targets in the downstream signaling pathway. Each of the three molecules in the system contains two binding motifs that can interact with each other and are connected by a flexible linker. By applying the new simulation method to the model, we show that the scaffold proteins will promote not only thermodynamics but also kinetics of cell signaling given the premise that the interaction between the two signaling molecules is transient. Moreover, by changing the flexibility of the linker between two binding motifs, our results suggest that the conformational fluctuations in a scaffold protein play a positive role in recruiting downstream signaling molecules. In summary, this study showcases the capability of computational simulation in understanding the general principles of scaffold protein functions.


Assuntos
Proteínas , Transdução de Sinais , Simulação por Computador , Cinética , Ligação Proteica , Proteínas/metabolismo , Termodinâmica
15.
Biomolecules ; 10(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679892

RESUMO

The formation of functionally versatile protein complexes underlies almost every biological process. The estimation of how fast these complexes can be formed has broad implications for unravelling the mechanism of biomolecular recognition. This kinetic property is traditionally quantified by association rates, which can be measured through various experimental techniques. To complement these time-consuming and labor-intensive approaches, we developed a coarse-grained simulation approach to study the physical processes of protein-protein association. We systematically calibrated our simulation method against a large-scale benchmark set. By combining a physics-based force field with a statistically-derived potential in the simulation, we found that the association rates of more than 80% of protein complexes can be correctly predicted within one order of magnitude relative to their experimental measurements. We further showed that a mixture of force fields derived from complementary sources was able to describe the process of protein-protein association with mechanistic details. For instance, we show that association of a protein complex contains multiple steps in which proteins continuously search their local binding orientations and form non-native-like intermediates through repeated dissociation and re-association. Moreover, with an ensemble of loosely bound encounter complexes observed around their native conformation, we suggest that the transition states of protein-protein association could be highly diverse on the structural level. Our study also supports the idea in which the association of a protein complex is driven by a "funnel-like" energy landscape. In summary, these results shed light on our understanding of how protein-protein recognition is kinetically modulated, and our coarse-grained simulation approach can serve as a useful addition to the existing experimental approaches that measure protein-protein association rates.


Assuntos
Proteínas/química , Proteínas/metabolismo , Algoritmos , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Método de Monte Carlo , Ligação Proteica , Conformação Proteica , Termodinâmica
16.
J Chem Theory Comput ; 16(8): 5323-5333, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32667783

RESUMO

Complexes formed among diverse proteins carry out versatile functions in nearly all physiological processes. Association rates which measure how fast proteins form various complexes are of fundamental importance to characterize their functions. The association rates are not only determined by the energetic features at binding interfaces of a protein complex but also influenced by the intrinsic conformational dynamics of each protein in the complex. Unfortunately, how this conformational effect regulates protein association has never been calibrated on a systematic level. To tackle this problem, we developed a multiscale strategy to incorporate the information on protein conformational variations from Langevin dynamic simulations into a kinetic Monte Carlo algorithm of protein-protein association. By systematically testing this approach against a large-scale benchmark set, we found the association of a protein complex with a relatively rigid structure tends to be reduced by its conformational fluctuations. With specific examples, we further show that higher degrees of structural flexibility in various protein complexes can facilitate the searching and formation of intermolecular interactions and thereby accelerate their associations. In general, the integration of conformational dynamics can improve the correlation between experimentally measured association rates and computationally derived association probabilities. Finally, we analyzed the statistical distributions of different secondary structural types on protein-protein binding interfaces and their preference to the change of association rates. Our study, to the best of our knowledge, is the first computational method that systematically estimates the impacts of protein conformational dynamics on protein-protein association. It throws lights on the molecular mechanisms of how protein-protein recognition is kinetically modulated.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Algoritmos , Cinética , Método de Monte Carlo , Ligação Proteica , Conformação Proteica
17.
J Biomol Struct Dyn ; 38(14): 4259-4272, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31630641

RESUMO

Mutation in two genes deglycase gene (DJ-1) and retromer complex component gene (VPS35) are linked with neurodegenerative disorder such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. DJ-1 gene located at 1p36 chromosomal position and involved in PD pathogenesis through many pathways including mitochondrial dysfunction and oxidative injury. VPS35 gene located at 16q13-q21 chromosomal position and the two pathways, the Wnt signaling pathway, and retromer-mediated DMT1 missorting are proposed for basis of VPS35 related PD. The study focuses on identifying most deleterious SNPs through computational analysis. Result obtained from various bioinformatics tools shows that D149A is most deleterious in DJ-1 and A54W, R365H, and V717M are most deleterious in VPS35. To understand the functionality of protein comparative modeling of DJ-1 and VPS35 native and mutants was done by MODELLER. The generated structures are validated by two web servers-ProSa and RAMPAGE. Molecular dynamic simulation (MDS) analysis done for the most validated structures to know the functional and structural nature of native and mutants protein of DJ-1 and VPS35. Native structure of DJ-1 and VPS35 show more flexibility through MDS analysis. DJ-1 D149A mutant structures become more compact which shows the structural perturbation and loss of DJ-1 protein function which in turn are probable cause for PD. A54W, R365H, and V717M mutant protein of VPS35 also shows compactness which cause structure perturbation and absence of retromer function which likely to be linked to PD pathogenesis. This in silico study may provide a new insight for fundamental molecular mechanism involved in Parkinson's disease. Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Doenças Neurodegenerativas , Humanos , Mutação , Doenças Neurodegenerativas/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte Vesicular/genética
18.
J Cell Biochem ; 120(11): 18826-18844, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31286540

RESUMO

Hepatic copper levels differ among patients with Wilson disease (WD) and normal individuals depending on the dietary intake, copper bioavailability, and genetic factors. Copper chloride (CuCl2 ) caused dose-dependent reduction in cell viability of human teratocarcinoma (HepG2) cell line, measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Cells were exposed to different concentrations of CuCl2 in log doses and maximum cell viability reduction was recorded at 15 µg/mL. Toxic dose of CuCl2 is potent inducer of reactive oxygen species (ROS). Apoptosis as a pattern of cell death was confirmed through sub-G1 fraction and morphological changes such as mitochondrial depolarization, endoplasmic reticulum and lysosomal destabilization, phosphatidylserine translocation, and DNA damage. Our transcriptional and translational results strongly support apoptotic cell death. Using the available data present in dbSNP and bioinformatics tools, three nonsynonymous single nucleotide polymorphisms (nsSNPs) were identified as deleterious, reducing the stability of protein ATP7B. Structural analysis of native and mutant ATP7B proteins was investigated using molecular dynamics simulation (MDS) approach. Mutation in ATP7B gene might disturb the structural conformation and catalytic function of the ATP7B protein may be inducing WD. Hence, excess dietary intake of copper chloride must be avoided for safety of health to prevent from WD.


Assuntos
Carcinoma Hepatocelular , ATPases Transportadoras de Cobre , Degeneração Hepatolenticular , Neoplasias Hepáticas , Modelos Biológicos , Proteínas de Neoplasias , Apoptose , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Dano ao DNA , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Infect Genet Evol ; 67: 101-111, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396000

RESUMO

Ornithine decarboxylase (ODC) is an immediate precursor of polyamine biosynthesis in Serratia marcescens and a potential target for inhibition of its growth. We predicted the 3D structural conformation of ODC enzyme and validated it using MDS in our previous study. In this current study, the potential inhibitors of ODC were obtained by virtual screening of potential inhibitors from ZINC database and studied in depth for their different binding pose. Among the ten virtually screened inhibitors, Conessine exhibited the best binding with ODC and its inhibition property was studied further by MDS studies. The natural compound conessine is isolated from plant Holarrhena antidysenterica and it is studied against ODC of Serratia marcenses for its inhibitory potentials. This revealed unforeseen twisted position in root mean square fluctuation (RMSF) and ODC modelled conformation that influenced ligand binding. Both predicted model and ligand bound model were compared and found to be stable with Root Mean Square Deviation (RMSD) of approximately 7 nm and 0.25 nm to that of crystallographic structure over simulation time of 55 ns and 70 ns respectively. This work paves the way for future development of new drugs against nosocomial diseases caused by Serratia marcescens.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Simulação de Dinâmica Molecular , Serratia marcescens/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Sítios de Ligação , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Relação Quantitativa Estrutura-Atividade
20.
Microb Pathog ; 125: 318-324, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30278209

RESUMO

Silver ions, because of its recognised antimicrobial activity are reported in several regions for the very long time while ergosterol, apart from its role as a secondary metabolite, structural component of the fungal cell membranes, also turns out to be activating defence response in plants. Silver ions biosynthesized by terpene ergosterol producing Trichoderma harzianum could be used against other plant pathogenic fungi. In this work, possible interaction of the silver ions with ergosterol enzyme has been investigated using a computational approach. Protein model construction via prior knowledge of sequences and molecular ligand docking experiments as well as structural and sequence comparisons were executed to identify potential active-site in ergosterol enzyme. Moldock score of -48.5747 with the reranking score of -40.0228 has been reported by Molegro Virtual Docker(MVD) at ergosterol enzyme's active site positions for silver ion. Apart from the core of the active site, four other positions have been occupied by silver ion. The interacting site surrounded by Cys339, Arg343, Lue365, Leu336 and Trp371 formed hydrophobic bonds with silver. The anti-microbial activity against phytopathogens is believed to increase synergistically when combined with ergosterol enzyme. Thus the computational analysis of silver ion in conjugation with ergosterol enzyme provided additional strategies to improve the ability of the Trichoderma strains in biocontrol of pathogenic fungi. In the present study, silver ion based formulations which are produced by strong bio-control fungi as shown were estimated in response to different plant pathogen in further studies.


Assuntos
Enzimas/metabolismo , Ergosterol/metabolismo , Nanopartículas/metabolismo , Prata/metabolismo , Trichoderma/metabolismo , Sítios de Ligação , Simulação de Acoplamento Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA