Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Exp Ther Med ; 25(3): 126, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36845960

RESUMO

Exosomes are small vesicles with a diameter of ~40-100 nm that are secreted by the majority of endogenous cells under normal and pathological conditions. They contain abundant proteins, lipids, microRNAs, and biomolecules such as signal transduction molecules, adhesion factors and cytoskeletal proteins, and play an important role in exchanging materials and transmitting information between cells. Recent studies have shown that exosomes are involved in the pathophysiology of leukaemia by affecting the bone marrow microenvironment, apoptosis, tumour angiogenesis, immune escape and chemotherapy resistance. Furthermore, exosomes are potential biomarkers and drug carriers for leukaemia, impacting the diagnosis and treatment of leukaemia. The present study describes the biogenesis and general characteristics of exosomes, and then highlight the emerging roles of exosomes in different types of leukaemia. Finally, the value of clinical application of exosomes as biomarkers and drug carriers is discussed with the aim to provide novel strategies for the treatment of leukaemia.

2.
Oncol Lett ; 24(4): 358, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36168313

RESUMO

Chimeric antigen receptor T (CAR-T) cells are a type of tumor immunotherapy that is a breakthrough technology in the clinical treatment of tumors. The basic principle of this method is to extract the patient's T cells and equip them with targeting recognition receptors of tumor cells and return them to the patient's body to recognize and kill tumor cells specifically. Most CAR-T cell therapies treat hematological diseases such as leukemia or lymphoma and achieved encouraging results. The safety and effectiveness of CAR-T cell technology in solid tumor treatment require to be improved, although it has demonstrated promising efficacy in treating hematological malignancies. It is worth noting that certain patients may experience fatal adverse reactions after receiving CAR-T cell therapy. At present, the difficulty of this therapy mainly lies in how to reduce adverse reactions and target escape effects during the course of treatment. The improvement of CAR-T cell therapy mainly focuses on improving CAR-T structure, finding suitable tumor targets and combining them with immune checkpoint inhibitors to the enhance efficacy and safety of treatment. The problems in the rapid development of CAR-T cell therapy provide both obstacles and opportunities. The present review elaborates on the clinical application of CAR-T cell technology to provide a reference for clinical practice and research on tumor treatment.

3.
Front Immunol ; 13: 891816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911710

RESUMO

An important number of studies have been conducted on the potential association between human leukocyte antigen (HLA) genes and COVID-19 susceptibility and severity since the beginning of the pandemic. However, case-control and peptide-binding prediction methods tended to provide inconsistent conclusions on risk and protective HLA alleles, whereas some researchers suggested the importance of considering the overall capacity of an individual's HLA Class I molecules to present SARS-CoV-2-derived peptides. To close the gap between these approaches, we explored the distributions of HLA-A, -B, -C, and -DRB1 1st-field alleles in 142 Iranian patients with COVID-19 and 143 ethnically matched healthy controls, and applied in silico predictions of bound viral peptides for each individual's HLA molecules. Frequency comparison revealed the possible predisposing roles of HLA-A*03, B*35, and DRB1*16 alleles and the protective effect of HLA-A*32, B*58, B*55, and DRB1*14 alleles in the viral infection. None of these results remained significant after multiple testing corrections, except HLA-A*03, and no allele was associated with severity, either. Compared to peptide repertoires of individual HLA molecules that are more likely population-specific, the overall coverage of virus-derived peptides by one's HLA Class I molecules seemed to be a more prominent factor associated with both COVID-19 susceptibility and severity, which was independent of affinity index and threshold chosen, especially for people under 60 years old. Our results highlight the effect of the binding capacity of different HLA Class I molecules as a whole, and the more essential role of HLA-A compared to HLA-B and -C genes in immune responses against SARS-CoV-2 infection.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Proteínas Virais , COVID-19/genética , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Irã (Geográfico) , Pessoa de Meia-Idade , Ligação Proteica , SARS-CoV-2 , Proteínas Virais/metabolismo
4.
J Virol ; 96(16): e0075422, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35913216

RESUMO

Lassa virus (LASV) is a mammarenavirus that can cause lethal Lassa fever disease with no FDA-approved vaccine and limited treatment options. Fatal LASV infections are associated with innate immune suppression. We have previously shown that the small matrix Z protein of LASV, but not of a nonpathogenic arenavirus Pichinde virus (PICV), can inhibit the cellular RIG-I-like receptors (RLRs), but its biological significance has not been evaluated in an infectious virus due to the multiple essential functions of the Z protein required for the viral life cycle. In this study, we developed a stable HeLa cell line (HeLa-iRIGN) that could be rapidly and robustly induced by doxycycline (Dox) treatment to express RIG-I N-terminal effector, with concomitant production of type I interferons (IFN-Is). We also generated recombinant tri-segmented PICVs, rP18tri-LZ, and rP18tri-PZ, which encode LASV Z and PICV Z, respectively, as an extra mScarlet fusion protein that is nonessential for the viral life cycle. Upon infection, rP18tri-LZ consistently expressed viral genes at a higher level than rP18tri-PZ. rP18tri-LZ also showed a higher level of a viral infection than rP18tri-PZ did in HeLa-iRIGN cells, especially upon Dox induction. The heterologous Z gene did not alter viral growth in Vero and A549 cells by growth curve analysis, while LASV Z strongly increased and prolonged viral gene expression, especially in IFN-competent A549 cells. Our study provides important insights into the biological role of LASV Z-mediated RIG-I inhibition and implicates LASV Z as a potential virulence factor. IMPORTANCE Lassa virus (LASV) can cause lethal hemorrhagic fever disease in humans but other arenaviruses, such as Pichinde virus (PICV), do not cause obvious disease. We have previously shown that the Z protein of LASV but not of PICV can inhibit RIG-I, a cytosolic innate immune receptor. In this study, we developed a stable HeLa cell line that can be induced to express the RIG-I N-terminal effector domain, which allows for timely control of RIG-I activation. We also generated recombinant PICVs encoding LASV Z or PICV Z as an extra gene that is nonessential for the viral life cycle. Compared to PICV Z, LASV Z could increase viral gene expression and viral infection in an infectious arenavirus system, especially when RIG-I signaling is activated. Our study presented a convenient cell system to characterize RIG-I signaling and its antagonists and revealed LASV Z as a possible virulence factor and a potential antiviral target.


Assuntos
Vírus Lassa , Proteínas Virais/metabolismo , Células HeLa , Humanos , Febre Lassa/virologia , Vírus Lassa/patogenicidade , Vírus Lassa/fisiologia , Vírus Pichinde/genética , Fatores de Virulência
6.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35383854

RESUMO

In a recent article, Immel et al. (Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, et al. 2021. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol Biol Evol. 38:4059-4076) extracted DNA from 36 individuals dead from plague in Ellwangen, Southern Germany, during the 16th century. By comparing their human leukocyte antigen (HLA) genotypes with those of 50 present-day Ellwangen inhabitants, the authors reported a significant decrease of HLA-B*51:01 and HLA-C*06:02 and a significant increase of HLA-DRB1*13:01/13:02 frequencies from ancient to modern populations. After comparing these frequencies with a larger sample of 8,862 modern Germans and performing simulations of natural selection, they concluded that these changes had been driven by natural selection. In an attempt to provide more evidence on such stimulating results, we explored the HLA frequency patterns over all of Europe, we predicted binding affinities of HLA-B/C/DRB1 alleles to 106,515 Yersinia pestis-derived peptides, and we performed forward simulations of HLA genetic profiles under neutrality. Our analyses do not sustain the conclusions of HLA protection or susceptibility to plague based on ancient DNA.


Assuntos
Predisposição Genética para Doença , Antígenos HLA , Peste , DNA , DNA Antigo , Europa (Continente) , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II , Humanos , Peste/genética , Yersinia pestis
7.
Front Immunol ; 13: 841859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281028

RESUMO

Human natural killer (NK) cells can target tumor cells in an antigen-specific manner by the recognition of cell bound antibodies. This process induces antibody-dependent cell-mediated cytotoxicity (ADCC) and is exclusively mediated by the low affinity IgG Fc receptor CD16A (FcγRIIIA). Exploiting ADCC by NK cells is a major area of emphasis for advancing cancer immunotherapies. CD64 (FcγRI) is the only high affinity IgG FcR and it binds to the same IgG isotypes as CD16A, but it is not expressed by human NK cells. We have generated engineered human NK cells expressing recombinant CD64 with the goal of increasing their ADCC potency. Preclinical testing of this approach is essential for establishing efficacy and safety of the engineered NK cells. The dog provides particular advantages as a model, which includes spontaneous development of cancer in the setting of an intact and outbred immune system. To advance this immunotherapy model, we cloned canine CD16A and CD64 and generated specific mAbs. We report here for the first time the expression patterns of these FcγRs on dog peripheral blood leukocytes. CD64 was expressed by neutrophils and monocytes, but not lymphocytes, while canine CD16A was expressed at high levels by a subset of monocytes and lymphocytes. These expression patterns are similar to that of human leukocytes. Based on phenotypic characteristics, the CD16A+ lymphocytes consisted of T cells (CD3+ CD8+ CD5dim α/ß TCR+) and NK cells (CD3- CD5- CD94+), but not B cells. Interestingly, the majority of canine CD16A+ lymphocytes were from the T cell population. Like human CD16A, canine CD16A was downregulated by a disintegrin and metalloproteinase 17 (ADAM17) upon leukocyte activation, revealing a conserved means of regulation. We also directly demonstrate that both canine CD16A and CD64 can induce ADCC when expressed in the NK cell line NK-92. These findings pave the way to engineering canine NK cells or T cells with high affinity recombinant canine CD64 to maximize ADCC and to test their safety and efficacy to benefit both humans and dogs.


Assuntos
Neoplasias , Receptores Fc , Animais , Citotoxicidade Celular Dependente de Anticorpos , Cães , Imunoglobulina G/metabolismo , Células Matadoras Naturais , Leucócitos/metabolismo , Receptores Fc/metabolismo
8.
Front Immunol ; 12: 801811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925387

RESUMO

RIG-I and MDA5 are major cytoplasmic innate-immune sensor proteins that recognize aberrant double-stranded RNAs generated during virus infection to activate type 1 interferon (IFN-I) and IFN-stimulated gene (ISG) expressions to control virus infection. The roles of RIG-I and MDA5 in controlling replication of Pichinde virus (PICV), a mammarenavirus, in mice have not been examined. Here, we showed that MDA5 single knockout (SKO) and RIG-I/MDA5 double knockout (DKO) mice are highly susceptible to PICV infection as evidenced by their significant reduction in body weights during the course of the infection, validating the important roles of these innate-immune sensor proteins in controlling PICV infection. Compared to the wildtype mice, SKO and DKO mice infected with PICV had significantly higher virus titers and lower IFN-I expressions early in the infection but appeared to exhibit a late and heightened level of adaptive immune responses to clear the infection. When a recombinant rPICV mutant virus (rPICV-NPmut) that lacks the ability to suppress IFN-I was used to infect mice, as expected, there were heightened levels of IFN-I and ISG expressions in the wild-type mice, whereas infected SKO and DKO mice showed delayed mouse growth kinetics and relatively low, delayed, and transient levels of innate and adaptive immune responses to this viral infection. Taken together, our data suggest that PICV infection triggers activation of immune sensors that include but might not be necessarily limited to RIG-I and MDA5 to stimulate effective innate and adaptive immune responses to control virus infection in mice.


Assuntos
Infecções por Arenaviridae/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Receptores de Superfície Celular/imunologia , Animais , Camundongos , Camundongos Knockout , Vírus Pichinde/imunologia , Replicação Viral/imunologia
9.
Pathogens ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34451501

RESUMO

The SARS-CoV-2 nucleocapsid protein (N) binds a single-stranded viral RNA genome to form a helical ribonucleoprotein complex that is packaged into virion particles. N is relatively conserved among coronaviruses and consists of the N-terminal domain (NTD) and C-terminal domain (CTD), which are flanked by three disorganized regions. N is highly immunogenic and has been widely used to develop a serological assay as a diagnostic tool for COVID-19 infection, although there is a concern that the natural propensity of N to associate with RNA might compromise the assay's specificity. We expressed and purified from bacterial cells two recombinant forms of SARS-CoV-2 N, one from the soluble fraction of bacterial cell lysates that is strongly associated with bacterial RNAs and the other that is completely devoid of RNAs. We showed that both forms of N can be used to develop enzyme-linked immunosorbent assays (ELISAs) for the specific detection of human and mouse anti-N monoclonal antibodies (mAb) as well as feline SARS-CoV-2 seropositive serum samples, but that the RNA-free form of N exhibits a slightly higher level of sensitivity than the RNA-bound form to react to anti-N mouse mAb. Using the electrophoretic mobility shift assay (EMSA), we also showed that N preferentially binds ssRNA in a sequence-independent manner and that both NTD and CTD of N contribute to RNA-binding activity. Collectively, our study describes methods to express, purify, and biochemically characterize the SARS-CoV-2 N protein and to use it for the development of serological assays to detect SARS-CoV-2 infection.

10.
Virulence ; 12(1): 1597-1609, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34125647

RESUMO

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is continuing to spread globally. SARS-CoV-2 infections of feline and canine species have also been reported. However, it is not entirely clear to what extent natural SARS-CoV-2 infection of pet dogs and cats is in households. We have developed enzyme-linked immunosorbent assays (ELISAs) using recombinant SARS-CoV-2 nucleocapsid (N) protein and the receptor-binding-domain (RBD) of the spike protein, and the SARS-CoV-2 spike-pseudotyped vesicular stomatitis virus (VSV)-based neutralization assay to screen serum samples of 239 pet cats and 510 pet dogs in Minnesota in the early phase of the COVID-19 pandemic from mid-April to early June 2020 for evidence of SARS-CoV-2 exposures. A cutoff value was used to identify the seropositive samples in each experiment. The average seroprevalence of N- and RBD-specific antibodies in pet cats were 8% and 3%, respectively. Among nineteen (19) N-seropositive cat sera, fifteen (15) exhibited neutralizing activity and seven (7) were also RBD-seropositive. The N-based ELISA is also specific and does not cross react with antigens of common feline coronaviruses. In contrast, SARS-CoV-2 antibodies were detected at a very low percentage in pet dogs (~ 1%) and were limited to IgG antibodies against SARS-CoV-2 N protein with no neutralizing activities. Our results demonstrate that SARS-CoV-2 seropositive rates are higher in pet cats than in pet dogs in MN early in the pandemic and that SARS-CoV-2 N-specific IgG antibodies can detect SARS-CoV-2 infections in companion animals with higher levels of specificity and sensitivity than RBD-specific IgG antibodies in ELISA-based assays.


Assuntos
Teste Sorológico para COVID-19/veterinária , COVID-19/veterinária , Animais de Estimação/virologia , SARS-CoV-2/isolamento & purificação , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , Gatos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Coronavirus Felino/imunologia , Coronavirus Felino/isolamento & purificação , Cães , Ensaio de Imunoadsorção Enzimática/veterinária , Minnesota/epidemiologia , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia
11.
Mol Biol Evol ; 38(4): 1580-1594, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33320202

RESUMO

Human leukocyte antigen (HLA) genes are among the most polymorphic of our genome, as a likely consequence of balancing selection related to their central role in adaptive immunity. HLA-A and HLA-B genes were recently suggested to evolve through a model of joint divergent asymmetric selection conferring all human populations, including those with severe loss of diversity, an equivalent immune potential. However, the mechanisms by which these two genes might undergo joint evolution while displaying very distinct allelic profiles in populations are still unknown. To address this issue, we carried out extensive data analyses (among which factorial correspondence analysis and linear modeling) on 2,909 common and rare HLA-A, HLA-B, and HLA-C alleles and 200,000 simulated pathogenic peptides by taking into account sequence variation, predicted peptide-binding affinity and HLA allele frequencies in 123 populations worldwide. Our results show that HLA-A and HLA-B (but not HLA-C) molecules maintain considerable functional divergence in almost all populations, which likely plays an instrumental role in their immune defense. We also provide robust evidence of functional complementarity between HLA-A and HLA-B molecules, which display asymmetric relationships in terms of amino acid diversity at both inter- and intraprotein levels and in terms of promiscuous or fastidious peptide-binding specificities. Like two wings of a flying bird, the functional complementarity of HLA-A and HLA-B is a perfect example, in our genome, of duplicated genes sharing their capacity of assuming common vital functions while being submitted to complex and sometimes distinct environmental pressures.


Assuntos
Evolução Molecular , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Seleção Genética , Alelos , Sequência de Aminoácidos , Antígenos HLA-A/química , Antígenos HLA-B/química , Humanos
12.
HLA ; 96(3): 277-298, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32475052

RESUMO

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por HIV/epidemiologia , Antígenos HLA/química , Influenza Humana/epidemiologia , Pandemias , Peptídeos/química , Pneumonia Viral/epidemiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Proteínas Virais/química , África/epidemiologia , América/epidemiologia , Sequência de Aminoácidos , Ásia/epidemiologia , Austrália/epidemiologia , Betacoronavirus/genética , Betacoronavirus/imunologia , COVID-19 , Biologia Computacional , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Europa (Continente)/epidemiologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Antígenos HLA/classificação , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Cinética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Peptídeos/genética , Peptídeos/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia
13.
Clin Exp Allergy ; 50(2): 231-243, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715648

RESUMO

BACKGROUND: The on-purpose-modulated dendritic cells (DCs) have shown charming effects on restoring immune regulatory functions in subjects with immune diseases. OBJECTIVE: This study aims to construct DCs carrying chimerical antigen (Ag) peptides (CAP-DCs) to induce interleukin (IL)-17+ inducible Tregs (iTregs) to alleviate food allergy (FA) in a murine model. METHODS: In this study, we constructed CAP-DCs. The CAP is a fusion protein, consisting of a segment of recombinant scFv of anti-DEC205 antibody and an ovalbumin (OVA) epitope (IC). A murine OVA-FA model was developed to test the effects of CAP-DCs on suppressing the allergic response in the intestine. RESULTS: The CAP-DCs are characterized as that a complex of scFv-IC is presented on the surface of the cells, moderately express CD80 and CD86 as well as IL-6, IL-23, transforming growth factor (TGF)-ß and CCR9. After being passively transferred with CAP-DCs or injection of scFv-IC, Ag-specific IL-17+ Foxp3+ iTregs were induced in the intestinal lamina propria of FA mice. The iTregs showed immune suppressive effects on Ag-specific Th2 response. FA mice were adoptively transferred with the CAP-DCs or scFv-IC injection, which resulted in a significant decrease in the number of Ag-specific Th2 cells and suppression of FA response in an Ag-specific manner. CONCLUSIONS AND CLINICAL RELEVANCE: CAP-DCs can ameliorate FA response by inducing Ag-specific IL-17+ Foxp3+ iTregs and suppressing Ag-specific Th2 response. To generate CAP-DCs has the translational potential in the treatment of FA.


Assuntos
Antígenos/imunologia , Células Dendríticas , Dessensibilização Imunológica , Epitopos de Linfócito T/imunologia , Hipersensibilidade Alimentar , Interleucina-17/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/transplante , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/terapia , Camundongos
14.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462569

RESUMO

Several mammarenaviruses can cause deadly hemorrhagic fever infections in humans, with limited preventative and therapeutic measures available. Arenavirus cell entry is mediated by the viral glycoprotein (GP) complex, which consists of the stable signal peptide (SSP), the receptor-binding subunit GP1, and the transmembrane subunit GP2. The GP2 cytoplasmic tail (CT) is relatively conserved among arenaviruses and is known to interact with the SSP to regulate GP processing and membrane fusion, but its biological role in the context of an infectious virus has not been fully characterized. Using a Pichinde virus (PICV) GP expression vector and a PICV reverse genetics system, we systematically characterized the functional roles of 12 conserved residues within the GP2 CT in GP processing, trafficking, assembly, and fusion, as well as in viral replication. Except for P478A and K505A R508A, alanine substitutions at conserved residues abolished GP processing and membrane fusion in plasmid-transfected cells. Six invariant H and C residues and W503 are essential for viral replication, as evidenced by the fact that their mutant viruses could not be rescued. Both P480A and R482A mutant viruses were rescued, grew similarly to wild-type (WT) virus, and produced evidently processed GP1 and GP2 subunits in virus-infected cells, despite the fact that the same mutations abolished GP processing and membrane fusion in a plasmid-based protein expression system, illustrating the importance of using an infectious-virus system for analyzing viral glycoprotein function. In summary, our results demonstrate an essential biological role of the GP2 CT in arenavirus replication and suggest it as a potential novel target for developing antivirals and/or attenuated viral vaccine candidates.IMPORTANCE Several arenaviruses, such as Lassa virus (LASV), can cause severe and lethal hemorrhagic fever diseases with high mortality and morbidity, for which no FDA-approved vaccines or therapeutics are available. Viral entry is mediated by the arenavirus GP complex, which consists of the stable signal peptide (SSP), the receptor-binding subunit GP1, and the transmembrane subunit GP2. The cytoplasmic tail (CT) of GP2 is highly conserved among arenaviruses, but its functional role in viral replication is not completely understood. Using a reverse genetics system of a prototypic arenavirus, Pichinde virus (PICV), we show that the GP2 CT contains certain conserved residues that are essential for virus replication, implicating it as a potentially good target for developing antivirals and live-attenuated viral vaccines against deadly arenavirus pathogens.


Assuntos
Glicoproteínas/metabolismo , Vírus Pichinde/genética , Proteínas do Envelope Viral/genética , Células A549 , Substituição de Aminoácidos/genética , Animais , Arenaviridae , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/metabolismo , Arenavirus/genética , Arenavirus/metabolismo , Linhagem Celular , Chlorocebus aethiops , Glicoproteínas/genética , Células HEK293 , Humanos , Fusão de Membrana/genética , Mutação/genética , Vírus Pichinde/metabolismo , Sinais Direcionadores de Proteínas/genética , Células Vero , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Replicação Viral
15.
J Vis Exp ; (145)2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30907867

RESUMO

Killer cell immunoglobulin-like receptors (KIRs) are a set of inhibitory and activating immune receptors, on natural killer (NK) and T cells, encoded by a polymorphic cluster of genes on chromosome 19. Their best-characterized ligands are the human leukocyte antigen (HLA) molecules that are encoded within the major histocompatibility complex (MHC) locus on chromosome 6. There is substantial evidence that they play a significant role in immunity, reproduction, and transplantation, making it crucial to have techniques that can accurately genotype them. However, high-sequence homology, as well as allelic and copy number variation, make it difficult to design methods that can accurately and efficiently genotype all KIR genes. Traditional methods are usually limited in the resolution of data obtained, throughput, cost-effectiveness, and the time taken for setting up and running the experiments. We describe a method called quantitative KIR semi-automated typing (qKAT), which is a high-throughput multiplex real-time polymerase chain reaction method that can determine the gene copy numbers for all genes in the KIR locus. qKAT is a simple high-throughput method that can provide high-resolution KIR copy number data, which can be further used to infer the variations in the structurally polymorphic haplotypes that encompass them. This copy number and haplotype data can be beneficial for studies on large-scale disease associations, population genetics, as well as investigations on expression and functional interactions between KIR and HLA.


Assuntos
Receptores KIR/genética , Software , Automação , Variações do Número de Cópias de DNA/genética , Haplótipos , Humanos , Desequilíbrio de Ligação/genética
16.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669840

RESUMO

RIG-I is a major cytoplasmic sensor of viral pathogen-associated molecular pattern (PAMP) RNA and induces type I interferon (IFN) production upon viral infection. A double-stranded RNA (dsRNA)-binding protein, PACT, plays an important role in potentiating RIG-I function. We have shown previously that arenaviral nucleoproteins (NPs) suppress type I IFN production via their RNase activity to degrade PAMP RNA. We report here that NPs of arenaviruses block the PACT-induced enhancement of RIG-I function to mediate type I IFN production and that this inhibition is dependent on the RNase function of NPs, which is different from that of a known mechanism of other viral proteins to abolish the interaction between PACT and RIG-I. To understand the biological roles of PACT and RIG-I in authentic arenavirus infection, we analyze growth kinetics of recombinant Pichinde virus (PICV), a prototypical arenavirus, in RIG-I knockout (KO) and PACT KO mouse embryonic fibroblast (MEF) cells. Wild-type (WT) PICV grew at higher titers in both KO MEF lines than in normal MEFs, suggesting the important roles of these cellular proteins in restricting virus replication. PICV carrying the NP RNase catalytically inactive mutation could not grow in normal MEFs but could replicate to some extent in both KO MEF lines. The level of virus growth was inversely correlated with the amount of type I IFNs produced. These results suggest that PACT plays an important role in potentiating RIG-I function to produce type I IFNs in order to restrict arenavirus replication and that viral NP RNase activity is essential for optimal viral replication by suppressing PACT-induced RIG-I activation.IMPORTANCE We report here a new role of the nucleoproteins of arenaviruses that can block type I IFN production via their specific inhibition of the cellular protein sensors of virus infection (RIG-I and PACT). Our results suggest that PACT plays an important role in potentiating RIG-I function to produce type I IFNs in order to restrict arenavirus replication. This new knowledge can be exploited for the development of novel antiviral treatments and/or vaccines against some arenaviruses that can cause severe and lethal hemorrhagic fever diseases in humans.


Assuntos
Arenavirus/patogenicidade , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Nucleoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteínas Virais/metabolismo , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/metabolismo , Infecções por Arenaviridae/virologia , Células HEK293 , Humanos , Nucleoproteínas/genética , Vírus Pichinde/fisiologia , Proteínas de Ligação a RNA/genética , Receptores do Ácido Retinoico/genética , Proteínas Virais/genética , Replicação Viral
17.
Mol Ecol ; 26(22): 6238-6252, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28950417

RESUMO

Human leukocyte antigen (HLA) genes play a key role in the immune response to infectious diseases, some of which are highly prevalent in specific environments, like malaria in sub-Saharan Africa. Former case-control studies showed that one particular HLA-B allele, B*53, was associated with malaria protection in Gambia, but this hypothesis was not tested so far within a population genetics framework. In this study, our objective was to assess whether pathogen-driven selection associated with malaria contributed to shape the HLA-B genetic landscape of Africa. To that aim, we first typed the HLA-A and -B loci in 484 individuals from 11 populations living in different environments across the Sahel, and we analysed these data together with those available for 29 other populations using several approaches including linear modelling on various genetic, geographic and environmental parameters. In addition to relevant signatures of populations' demography and migrations history in the genetic differentiation patterns of both HLA-A and -B loci, we found that the frequencies of three HLA alleles, B*53, B*78 and A*74, were significantly associated with Plasmodium falciparum malaria prevalence, suggesting their increase through pathogen-driven selection in malaria-endemic environments. The two HLA-B alleles were further identified, by high-throughput sequencing, as B*53:01:01 (in putative linkage disequilibrium with one HLA-C allele, C*04:01:01:01) and B*78:01 in all but one individuals tested, making them appropriate candidates to malaria protection. These results highlight the role of environmental factors in the evolution of the HLA polymorphism and open key perspectives for functional studies focusing on HLA peptide-binding properties.


Assuntos
Resistência à Doença/genética , Genética Populacional , Antígenos HLA-B/genética , Malária Falciparum/genética , África Subsaariana , Alelos , Humanos , Desequilíbrio de Ligação
18.
Oncotarget ; 7(12): 13827-41, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26885617

RESUMO

TEF3-1 (transcriptional enhancer factor 3 isoform 1), also known as TEAD4 (TEA domain family member 4), was recently revealed as an oncogenic character in cancer development. However, the underlying molecular pathogenic mechanisms remain undefined. In this paper, we investigated nuclear TEF3-1 could promote G1/S transition in HUVECs, and the expression levels of cyclins and CDKs were upregulated. Additionally, if TEF3-1 was knocked down, the expression of cyclins and CDKs was downregulated while the expression of P21, a negative regulator of the cell cycle, was upregulated. A microarray analysis also confirmed that TEF3-1 overexpression upregulates genes that are related to cell cycle progression and the promotion of angiogenesis. Moreover, we observed that nuclear TEF3-1 was highly expressed during the formation of vascular structures in gastric cancer (GC). Finally, tumor xenograft experiments indicated that, when TEF3-1 was knocked down, tumor growth and angiogenesis were also suppressed. Taken together, these results demonstrate for the first time that TEF3-1 localization to the nucleus stimulates the cell cycle progression in HUVECs and specifically contributes to tumor angiogenesis. Nuclear TEF3-1 in HUVECs may serve as an oncogenic biomarker, and the suppression of TEF3-1 may be a potential target in anti-tumor therapy.


Assuntos
Ciclo Celular , Núcleo Celular/metabolismo , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/metabolismo , Neovascularização Patológica/patologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Musculares/genética , Neovascularização Patológica/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Evol Biol ; 15: 240, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530905

RESUMO

BACKGROUND: Recent genetic studies have suggested that the colonization of East Asia by modern humans was more complex than a single origin from the South, and that a genetic contribution via a Northern route was probably quite substantial. RESULTS: Here we use a spatially-explicit computer simulation approach to investigate the human migration hypotheses of this region based on one-route or two-route models. We test the likelihood of each scenario by using Human Leukocyte Antigen (HLA) - A, -B, and - DRB1 genetic data of East Asian populations, with both selective and demographic parameters considered. The posterior distribution of each parameter is estimated by an Approximate Bayesian Computation (ABC) approach. CONCLUSIONS: Our results strongly support a model with two main routes of colonization of East Asia on both sides of the Himalayas, with distinct demographic histories in Northern and Southern populations, characterized by more isolation in the South. In East Asia, gene flow between populations originating from the two routes probably existed until a remote prehistoric period, explaining the continuous pattern of genetic variation currently observed along the latitude. A significant although dissimilar level of balancing selection acting on the three HLA loci is detected, but its effect on the local genetic patterns appears to be minor compared to those of past demographic events.


Assuntos
Simulação por Computador , Antígenos HLA/genética , Migração Humana , Povo Asiático/genética , Teorema de Bayes , Ásia Oriental , Fluxo Gênico , Variação Genética , Humanos
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA