Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Antimicrob Agents Chemother ; 68(3): e0123123, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289082

RESUMO

Multidrug-resistant Enterobacteriaceae, a prominent family of gram-negative pathogenic bacteria, causes a wide range of severe diseases. Strains carrying the mobile colistin resistance (mcr-1) gene show resistance to polymyxin, the last line of defense against multidrug-resistant gram-negative bacteria. However, the transmission of mcr-1 is not well understood. In this study, genomes of mcr-1-positive strains were obtained from the NCBI database, revealing their widespread distribution in China. We also showed that ISApl1, a crucial factor in mcr-1 transmission, is capable of self-transposition. Moreover, the self-cyclization of ISApl1 is mediated by its own encoded transposase. The electrophoretic mobility shift assay experiment validated that the transposase can bind to the inverted repeats (IRs) on both ends, facilitating the cyclization of ISApl1. Through knockout or shortening of IRs at both ends of ISApl1, we demonstrated that the cyclization of ISApl1 is dependent on the sequences of the IRs at both ends. Simultaneously, altering the ATCG content of the bases at both ends of ISApl1 can impact the excision rate by modifying the binding ability between IRs and ISAPL1. Finally, we showed that heat-unstable nucleoid protein (HU) can inhibit ISApl1 transposition by binding to the IRs and preventing ISAPL1 binding and expression. In conclusion, the regulation of ISApl1-self-circling is predominantly controlled by the inverted repeat (IR) sequence and the HU protein. This molecular mechanism deepens our comprehension of mcr-1 dissemination.


Assuntos
Colistina , Proteínas de Escherichia coli , Colistina/farmacologia , Antibacterianos/farmacologia , Plasmídeos , Farmacorresistência Bacteriana/genética , Transposases/genética , Proteínas de Escherichia coli/genética
2.
BMC Complement Med Ther ; 24(1): 15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169375

RESUMO

AIM OF THE STUDY: Cardiovascular disease (CVD) seriously endangers human health and is characterized by high mortality and disability. The effectiveness of Dracocephalum moldavica L. in the treatment of CVD has been proven by clinical practice. However, the mechanism by which DML can treat CVD has not been systematically determined. MATERIALS AND METHODS: The active compounds in DML were screened by literature mining and pharmacokinetic analysis. Cytoscape software was used to construct the target-disease interaction network of DML in the treatment of CVD. Gene ontology and signalling pathway enrichment analyses were performed. The key target pathway network of DML compounds was constructed and verified by pharmacological experiments in vitro. A hydrogen glucose deprivation/reoxygenation model was established in H9c2 cells using hypoxia and glucose deprivation for 9 h combined with reoxygenation for 2 h. The model simulated myocardial ischaemic reperfusion injury to investigate the effects of total flavonoids of Cymbidium on cell viability, myocardial injury markers, oxidative stress levels, and reactive oxygen radical levels. Western blot analysis was used to examine NOX-4, Bcl-2/Bax, and PGC-1α protein expression. RESULTS: Twenty-seven active components were screened, and 59 potential drug targets for the treatment of CVD were obtained. Through the compound-target interaction network and the target-disease interaction network, the key targets and key signalling pathways, such as NOX-4, Bcl-2/Bax and PGC-1α, were obtained. TFDM significantly decreased LDH and MDA levels and the production of ROS and increased SOD activity levels in the context of OGD/R injury. Further studies indicated that NOX-4 and Bax protein levels and the p-P38 MAPK/P38 MAPK andp-Erk1/2/Erk1/2 ratios were suppressed by TFDM. The protein expression of Bcl-2 and PGC-1α was increased by TFDM. CONCLUSIONS: Our results showed that DML had multicomponent, multitarget and multichannel characteristics in the treatment of CVD. The mechanism may be associated with the following signalling pathways: 1) the NOX-4/ROS/p38 MAPK signalling pathway, which inhibits inflammation and reactive oxygen species (ROS) production, and 2) the Bcl-2/Bax and AMPK/SIRT1/PGC-1α signalling pathways, which inhibit apoptosis.


Assuntos
Doenças Cardiovasculares , Flavonoides , Humanos , Flavonoides/farmacologia , Proteína X Associada a bcl-2 , Doenças Cardiovasculares/tratamento farmacológico , Espécies Reativas de Oxigênio , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-bcl-2 , Glucose , Proteínas Quinases p38 Ativadas por Mitógeno
3.
Front Immunol ; 14: 1287258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115997

RESUMO

ISG15 deficiency is a rare disease caused by autosomal recessive variants in the ISG15 gene, which encodes the ISG15 protein. The ISG15 protein plays a dual role in both the type I and II interferon (IFN) immune pathways. Extracellularly, the ISG15 protein is essential for IFN-γ-dependent anti-mycobacterial immunity, while intracellularly, ISG15 is necessary for USP18-mediated downregulation of IFN-α/ß signalling. Due to this dual role, ISG15 deficiency can present with various clinical phenotypes, ranging from susceptibility to mycobacterial infection to autoinflammation characterised by necrotising skin lesions, intracerebral calcification, and pulmonary involvement. In this report, we describe novel variants found in two different families that result in complete ISG15 deficiency and severe skin ulceration. Whole exome sequencing identified a heterozygous missense p.Q16X ISG15 variant and a heterozygous multigene 1p36.33 deletion in the proband from the first family. In the second family, a homozygous total ISG15 gene deletion was detected in two siblings. We also conducted further analysis, including characterisation of cytokine dysregulation, interferon-stimulated gene expression, and p-STAT1 activation in lymphocytes and lesional tissue. Finally, we demonstrate the complete and rapid resolution of clinical symptoms associated with ISG15 deficiency in one sibling from the second family following treatment with the Janus kinase (JAK) inhibitor baricitinib.


Assuntos
Citocinas , Ubiquitinas , Humanos , Ubiquitinas/metabolismo , Citocinas/metabolismo , Interferons , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
4.
Case Rep Oncol ; 16(1): 863-870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900843

RESUMO

Myofibroblastic sarcoma (MS) is a malignant tumor of soft tissue or bone that can occur in children or adults, with a high rate of recurrence and metastasis. We report a case of low-grade malignant MS of the left shoulder, diagnosed based on pathological examination and immunohistochemical staining. However, the patient had unexplained pleural maculopathy. The patient passed away 6 months after the diagnosis of myofibroblast sarcoma due to multiple metastases throughout the sarcoma. Combined with the patient's history, ancillary findings, and after MDT discussion, the patient was ultimately considered to have a high probability of myofibroblast sarcoma combined with pleural maculopathy. In conclusion, when a patient is diagnosed with myofibroblast sarcoma in combination with pleural macula, in the absence of other causative factors, a deep tissue biopsy of the pleura should be actively performed to confirm the diagnosis.

5.
ACS Nano ; 17(14): 13333-13347, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37404077

RESUMO

Glioblastomas (GBMs) are aggressive primary brain tumors with fatal outcome. Traditional chemo-radiotherapy has poor therapeutic effect and significant side effects, due to the drug and radiotherapy (RT) resistance, natural blood-brain barrier, and high-dose RT damage. Even more, tumor-associated monocytes (macrophages and microglia, TAMs) constitute up to 30%-50% of the GBM cellular content, and the tumor microenvironment (TME) in GBM is extremely immunosuppressive. Here, we synthesized nanoparticles (D@MLL) that hitchhike on circulating monocytes to target intracranial GBMs with the assistance of low-dose RT. The chemical construction of D@MLL was DOX·HCl loaded MMP-2 peptide-liposome, which could target monocytes by the surface modified lipoteichoic acid. First, low-dose RT at the tumor site increases monocyte chemotaxis and induces M1 type polarization of TAMs. Subsequently, the intravenous injected D@MLL targets circulating monocytes and hitchhikes with them to the central site of the GBM area. DOX·HCl was then released by the MMP-2 response, inducing immunogenic cell death, releasing calreticulin and high-mobility group box 1. This further contributed to TAMs M1-type polarization, dendritic cell maturation, and T cell activation. This study demonstrates the therapeutic advantages of D@MLL delivered by endogenous monocytes to GBM sites after low-dose RT, and it provides a high-precision treatment for GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Monócitos/metabolismo , Glioblastoma/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Macrófagos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral , Linhagem Celular Tumoral
6.
Biomaterials ; 301: 122231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418854

RESUMO

The challenge of wound infections post-surgery and open trauma caused by multidrug-resistant bacteria poses a constant threat to clinical treatment. As a promising antimicrobial treatment, photothermal therapy can effectively resolve the problem of drug resistance in conventional antibiotic antimicrobial therapy. Here, we report a deep-penetration functionalized cuttlefish ink nanoparticle (CINP) for photothermal and immunological therapy of wound infections. CINP is decorated with zwitterionic polymer (ZP, namely sulfobetaine methacrylate-methacrylate copolymer) to form CINP@ZP nanoparticles. Natural CINP is found to not only exhibit photothermal destruction of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), but also trigger macrophages-related innate immunity and enhance their antibacterial functions. The ZP coating on the surface of CINP enables nanoparticles to penetrate into deeply infected wound environment. In addition, CINP@ZP is further integrated into the thermosensitive Pluronic F127 gel (CINP@ZP-F127). After in situ spraying gel, CINP@ZP-F127 is also documented notable antibacterial effects in mice wound models infected with MRSA and E. coli. Collectively, this approach combining of photothermal therapy with immunotherapy can promote delivery efficiency of nanoparticles to the deep foci of infective wounds, and effectively eliminate wound infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecção dos Ferimentos , Camundongos , Animais , Terapia Fototérmica , Escherichia coli , Tinta , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Polímeros/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Decapodiformes
7.
Adv Mater ; 35(38): e2302551, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310059

RESUMO

Local lung microbiota is closely associated with lung tumorigenesis and therapeutic response. It is found that lung commensal microbes induce chemoresistance in lung cancer by directly inactivating therapeutic drugs via biotransformation. Accordingly, an inhalable microbial capsular polysaccharide (CP)-camouflaged gallium-polyphenol metal-organic network (MON) is designed to eliminate lung microbiota and thereby abrogate microbe-induced chemoresistance. As a substitute for iron uptake, Ga3+ released from MON acts as a "Trojan horse" to disrupt bacterial iron respiration, effectively inactivating multiple microbes. Moreover, CP cloaks endow MON with reduced immune clearance by masquerading as normal host-tissue molecules, significantly increasing residence time in lung tissue for enhanced antimicrobial efficacy. In multiple lung cancer mice models, microbe-induced drug degradation is remarkably inhibited when drugs are delivered by antimicrobial MON. Tumor growth is sufficiently suppressed and mouse survival is prolonged. The work develops a novel microbiota-depleted nanostrategy to overcome chemoresistance in lung cancer by inhibiting local microbial inactivation of therapeutic drugs.


Assuntos
Anti-Infecciosos , Gálio , Neoplasias Pulmonares , Microbiota , Nanopartículas , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Polifenóis , Pulmão/metabolismo , Ferro , Neoplasias Pulmonares/tratamento farmacológico , Polissacarídeos
8.
Clin Case Rep ; 11(6): e7555, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351350

RESUMO

Pleural mesothelioma (PM) with pericardial involvement is extremely rare. We now report a rare case of malignant PM with constrictive pericarditis as the first presentation. A 59-year-old male diagnosed with constrictive pericarditis underwent pericardiectomy and pericardial pathology revealed mesothelial hyperplasia. Eight months after surgery, the patient was admitted to the hospital with chest tightness and wheezing for 5 days. Computed tomography scan of the chest showed a left lung expansion insufficiency, limited bilateral pleural thickening, pericardial thickening with a small amount of pericardial effusion, and multiple enlarged lymph nodes in the mediastinum, bilateral supraclavicular fossa, bilateral cervical roots, and right axilla. The pleural malignancy should be possibly considered. Pathology after pleural puncture showed malignant PM. Pathology after left supraclavicular lymph node puncture biopsy showed metastatic malignant mesothelioma. The diagnosis of this patient was clear. Although malignant PM rarely involves the pericardial constriction, we cannot ignore the fact that malignant PM involves the pericardium. The patient has been diagnosed with constrictive pericarditis, accompanied by pleural thickening and pleural effusion. Without other pathogenic factors, pleural biopsy should be aggressively performed in patients with constrictive pericarditis to determine the cause.

9.
Brain Behav ; 13(6): e3030, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37143406

RESUMO

BACKGROUND: Exercise preconditioning (EP) is essential for preventing ischemic stroke. Recent studies have shown that EP exerts neuroprotective effects in the cerebral ischemia-reperfusion injury model. Nonetheless, there have been few reports on the relationship between EP and the Th17/Treg balance. Moreover, it is unclear whether the JAK2/STAT3 pathway is responsible for the neuroprotective effect of EP. Therefore, we aimed to explore the impact of EP, other than the anti-inflammatory and antiapoptotic functions, on the Th17/Treg balance via the JAK2/STAT3 pathway in a middle cerebral artery occlusion (MCAO)-induced model. RESULTS: Fifty rats were randomly allocated into five groups, including the sham group (n = 10), EP+sham group (n = 10), MCAO group (n = 10), EP+MCAO group (n = 10), and EP+MCAO+JAK2/STAT3 pathway agonist (coumermycin A1, CA1) group (n = 10). The results indicated that EP alleviated neurological deficits, reduced infarct volume, and ameliorated neuronal apoptosis induced by MCAO. Additionally, the MCAO-induced Th17/Treg imbalance could be rectified by EP. The decreased levels of IL-10 and Foxp3 and increased IL-17 and RORα in the MCAO group were reversed by EP treatment. Regarding inflammation, EP reduced the concentrations of IL-6 and IL-17 and elevated those of IL-10 and TGF-ß. The neuroprotective effects of EP were accompanied by decreased phosphorylation of JAK2 and STAT3. Furthermore, CA1 pretreatment diminished all the beneficial effects of EP partially. CONCLUSION: Our findings suggest that EP contributes to attenuating neuronal apoptosis, Th17/Treg imbalance, and inflammation induced by MCAO via inhibiting the JAK2/STAT3 pathway, indicating its therapeutic potential in ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Ratos , Animais , Interleucina-10 , Interleucina-17 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Linfócitos T Reguladores/metabolismo , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Inflamação , Infarto da Artéria Cerebral Média/tratamento farmacológico , Apoptose
10.
JID Innov ; 3(3): 100191, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213713

RESUMO

Recessive dystrophic epidermolysis bullosa is a debilitating blistering skin disorder caused by loss-of-function mutations in COL7A1, which encodes type VII collagen, the main component of anchoring fibrils at the dermal-epidermal junction. Although conventional gene therapy approaches through viral vectors have been tested in preclinical and clinical trials, they are limited by transgene size constraints and only support unregulated gene expression. Genome editing could potentially overcome some of these limitations, and CRISPR/Cas9 has already been applied in research studies to restore COL7A1 expression. The delivery of suitable repair templates for the repair of DNA cleaved by Cas9 is still a major challenge, and alternative base editing strategies may offer corrective solutions for certain mutations. We show highly targeted and efficient cytidine deamination and molecular correction of a defined recessive dystrophic epidermolysis bullosa mutation (c.425A>G), leading to restoration of full-length type VII collagen protein expression in primary human fibroblasts and induced pluripotent stem cells. Type VII collagen basement membrane expression and skin architecture were restored with de novo anchoring fibrils identified by electron microscopy in base-edited human recessive dystrophic epidermolysis bullosa grafts recovered from immunodeficient mice. The results show the potential and promise of emerging base editing technologies in tackling inherited disorders with well-defined single nucleotide mutations.

11.
Adv Mater ; 35(22): e2300977, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37029611

RESUMO

Despite the recognition that the gut microbiota acts a clinically significant role in cancer chemotherapy, both mechanistic understanding and translational research are still limited. Maximizing drug efficacy requires an in-depth understanding of how the microbiota contributes to therapeutic responses, while microbiota modulation is hindered by the complexity of the human body. To address this issue, a 3D experimental model named engineered microbiota (EM) is reported for bridging microbiota-drug interaction research and therapeutic decision-making. EM can be manipulated in vitro and faithfully recapitulate the human gut microbiota at the genus/species level while allowing co-culture with cells, organoids, and isolated tissues for testing drug responses. Examination of various clinical and experimental drugs by EM reveales that the gut microbiota affects drug efficacy through three pathways: immunological effects, bioaccumulation, and drug metabolism. Guided by discovered mechanisms, custom-tailored strategies are adopted to maximize the therapeutic efficacy of drugs on orthotopic tumor models with patient-derived gut microbiota. These strategies include immune synergy, nanoparticle encapsulation, and host-guest complex formation, respectively. Given the important role of the gut microbiota in influencing drug efficacy, EM will likely become an indispensable tool to guide drug translation and clinical decision-making.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Hidrogéis/farmacologia , Interações Medicamentosas , Modelos Teóricos
12.
Front Neurol ; 14: 1076310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937524

RESUMO

Objective: The objective of this research is to investigate the clinical application value of cerebrospinal fluid (CSF) cytology and circulating tumor DNA (ctDNA) in lung adenocarcinoma (LUAD) meningeal metastasis-meningeal carcinomatosis (MC), and to further explore the possible molecular mechanisms and drug treatment targets of LUAD meningeal metastasis by next-generation sequencing (NGS). Methods: We retrospectively analyzed LUAD with MC in 52 patients. CSF cytology was carried out using the slide centrifugation precipitation method and May-Grüwald-Giemsa (MGG) staining. Tumor tissue, plasma and CSF ctDNA of some MC patients were detected by NGS. Results: Of the 52 MC patients, 46 (88.46%) were positive for CSF cytology and 34 (65.38%) were positive for imaging, with statistically significant differences in diagnostic positivity (P < 0.05). In 32 of these patients, CSF cytology, cerebrospinal fluid ctDNA, plasma ctDNA and MRI examination were performed simultaneously, and the positive rates were 84.38, 100, 56.25, and 62.50% respectively, the difference was statistically significant (P < 0.001). Analysis of the NGS profiles of tumor tissues, plasma and CSF of 12 MC patients: the mutated gene with the highest detection rate was epidermal growth factor receptor (EGFR) and the detection rate were 100, 58.33, and 100% respectively in tumor tissues, plasma and CSF, and there were 6 cases of concordance between plasma and tissue EGFR mutation sites, with a concordance rate of 50.00%, and 12 cases of concordance between CSF and tissue EGFR mutation sites, with a concordance rate of 100%. In addition, mutations not found in tissue or plasma were detected in CSF: FH mutation, SETD2 mutation, WT1 mutation, CDKN2A mutation, CDKN2B mutation, and multiple copy number variants (CNV), with the most detected being CDKN2A mutation and MET amplification. Conclusion: CSF cytology is more sensitive than traditional imaging in the diagnosis of meningeal carcinomatosis and has significant advantages in the early screening and diagnosis of MC patients. CSF ctDNA can be used as a complementary diagnostic method to negative results of CSF cytology and MRI, and CSF ctDNA can be used as an important method for liquid biopsy of patients with MC, which has important clinical significance in revealing the possible molecular mechanisms and drug treatment targets of meningeal metastasis of LUAD.

13.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766688

RESUMO

Primary keratinocytes including keratinocyte stem cells (KSCs) can be cultured as epidermal sheets in vitro and are attractive for cell and gene therapies for genetic skin disorders. However, the initial slow growth of freshly isolated keratinocytes hinders clinical applications. Rho-associated kinase inhibitor (ROCKi) has been used to overcome this obstacle, but its influence on the characteristics of KSC and its safety for clinical application remains unknown. In this study, primary keratinocytes were treated with ROCKi Y-27632 for six days (short-term). Significant increases in colony formation and cell proliferation during the six-day ROCKi treatment were observed and confirmed by related protein markers and single-cell transcriptomic analysis. In addition, short-term ROCKi-treated cells maintained their differentiation ability as examined by 3D-organotypic culture. However, these changes could be reversed and became indistinguishable between treated and untreated cells once ROCKi treatment was withdrawn. Further, the short-term ROCKi treatment did not reduce the number of KSCs. In addition, AKT and ERK pathways were rapidly activated upon ROCKi treatment. In conclusion, short-term ROCKi treatment can transiently and reversibly accelerate initial primary keratinocyte expansion while preserving the holoclone-forming cell population (KSCs), providing a safe avenue for clinical applications.


Assuntos
Queratinócitos , Quinases Associadas a rho , Células Cultivadas , Células-Tronco , Epiderme , Inibidores de Proteínas Quinases/farmacologia
14.
Asia Pac J Clin Oncol ; 19(5): e248-e257, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36271660

RESUMO

AIMS: Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. This study aimed to explore the effects of Polysaccharide of Lactobacillus casei SB27 in colon cancer and its possible mechanisms. METHODS: Colon cancer was induced by giving dextran sulfate sodium and Azoxymethane. Uman Colon Cancer Cell Line (HCT)-116 cells were used to vitro model in this experiment. RESULTS: Polysaccharide of L. casei SB27 reduced colon cancer in azoxymethane-dextran sulfate sodium (AOM+DSS)-induced mice. Polysaccharide of L. casei SB27 reduced colon cancer prognosis in vitro model. Polysaccharide of L. casei SB27 reduced short chain fatty acids by Bacillus coli. Polysaccharide of L. casei promoted mitochondrial damage by Calcium ion entry. Polysaccharide of L. casei induced histidine nucleotide binding protein 2/mitochondrial calcium uniporter (HINT2/MCU) signaling pathway. Immunocoprecipitation (IP) showed that HINT2 protein interlinked MCU protein. Polysaccharide of L. casei suppressed HINT2 ubiquitination. The regulation of HINT2 affected the effects of L. casei polysaccharide on colon cancer prognosis and mitochondrial damage by Calcium ion entry in vitro model. CONCLUSION: In conclusion, the present report demonstrated that polysaccharide of L. casei SB27 reduced colon cancer cell prognosis through mitochondrial damage by upregulation of HINT2. Polysaccharide of L. casei SB27 might be used for colon cancer treatment and could be helpful for personalized treatment.


Assuntos
Neoplasias do Colo , Lacticaseibacillus casei , Humanos , Camundongos , Animais , Regulação para Cima , Sulfato de Dextrana , Cálcio/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Prognóstico , Azoximetano , Hidrolases/genética , Hidrolases/metabolismo , Proteínas Mitocondriais/genética
15.
Adv Sci (Weinh) ; 10(4): e2205480, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479844

RESUMO

Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug-resistant bacteria. Here, an in situ-formed biotherapeutic gel that controls multidrug-resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene-polypropylene glycol) solutions. Furthermore, it is found that the stable microbial communities-based biotherapeutic gel possesses a broad antimicrobial spectrum and strong antibacterial effects in diverse pathogenic bacteria-derived xenograft infection models, as well as in patient-derived multidrug-resistant bacterial xenograft infection models. The biotherapeutic gel system considerably outperforms the commercial broad-spectrum antibacterial gel (0.1% polyaminopropyl biguanide) in pathogen removal and infected wound healing. Collectively, this biotherapeutic strategy of exploiting stable symbiotic consortiums to repel pathogens provides a paradigm for developing efficient antibacterial biomaterials and overcomes the failure of antibiotics to treat multidrug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Poloxaleno/farmacologia , Infecções Bacterianas/tratamento farmacológico
16.
Eur J Surg Oncol ; 49(1): 252-256, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817633

RESUMO

BACKGROUND: The objective of this study is to describe the technique and evaluate the clinical value of normal saline (NS) injection for expanding the anterior perirectal space during prostate cryoablation for prostate cancer (PCa) patients. METHODS: PCa patients who received cryoablation between August 2014 and December 2019 were enrolled, and the technique of NS injection was adopted. The complications were evaluated. The prostate-specific antigen (PSA) nadir and biochemical progression-free survival (bPFS) were measured in localized PCa patients who received cryoablation as the primary treatment. RESULTS: A total of 159 PCa patients were included. Among 147 patients with the data of anterior perirectal space, the median (interquartile range [IQR]) distance of estimated iceball edge beyond the prostatic capsule was 8.3 (7.0-10.0) mm. No cases of urethrorectal fistula were reported; 29 patients developed urinary retention and 25 patients presented scrotal edema. All complications below Clavien-Dindo grade IIIb disappeared within 7 weeks after surgery. Urinary incontinence was reported in 6 patients. Among localized PCa patients, the median (IQR) follow-up time was 56.5 (36.0-73.5) months. The estimated 5-year bPFS was 82.3% overall, 82.8% for low-to intermediate-risk PCa patients, and 82.1% for high-risk PCa patients. For 52 patients received cryoablation alone, the median (IQR) PSA nadir was 0.147 (0.027-0.381) ng/mL. CONCLUSIONS: The technique of NS injection for expanding the anterior perirectal space during cryoablation surgery could avoid urethrorectal fistula and might benefit localized PCa patients with lower PSA nadir and longer bPFS.


Assuntos
Criocirurgia , Fístula , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico , Criocirurgia/métodos , Solução Salina , Próstata/cirurgia , Neoplasias da Próstata/cirurgia , Fístula/etiologia , Fístula/cirurgia , Resultado do Tratamento
17.
Folia Neuropathol ; 61(4): 426-432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174683

RESUMO

Parkinson's disease (PD) is a chronic neuronal loss of dopamine and drugs used for its management has several limitations. The present report determines the effect of exercise on mitochondrial autophagy against PD. Parkinson's disease was induced by 15 doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg, i.p.) for 3 weeks, on five consecutive days in a week. Exposure of exercise was provided for 40 min for a period of 2 weeks after PD confirmation. Assessment of behaviour was performed to evaluate the effect of exercise on motor function and cognitive function in PD rats. Levels of reactive oxygen species (ROS) and inflammatory cytokines were assessed in PD rats using enzyme linked immunosorbent assay (ELISA). Expression of myocyte-specific enhancer factor 2D (MEF2D) and NADH dehydrogenase 6 (ND6) was estimated in PD rats. Exposure to exercise ameliorates the altered motor function and cognitive function in PD rats. There was a reduction in ROS and cytokine levels in the brain tissue of the exercise group compared to the negative control group. Exercise ameliorates the altered expression of apoptotic proteins and mRNA expression of MEF2D and ND6 in the brain tissue of MPTP induced PD rats. In conclusion, data of study reveal that exercise protects the mitochondrial autophagy in PD rats by reducing inflammatory cytokines and oxidative stress.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , Ratos , Animais , Camundongos , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Autofagia/fisiologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Neurônios Dopaminérgicos
18.
Small ; 18(49): e2205193, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285774

RESUMO

Although anticancer vaccines have achieved certain effects in early clinical practice, T cell immunity as the most common responsive pattern of anticancer vaccines is still limited by unsatisfied tumor recognition and inhibition efficiency. As the critical step of T cell immunity, uptake and presentation of specific antigen by antigen-presenting cells (APC) can be activated by inflammation for enhancing the response of T cells to the antigen source. Here, a hybrid nanovaccine named PTh/MnO2 @M activated with a near-infrared ray (NIR) is prepared by coating an autologous tumor cell membrane on the surface of a polythiophene/MnO2 composite core. The photoelectrical material polythiophene can produce local microinflammation under NIR radiation and activate specific T cell antitumor immunity by promoting APC maturation and autologous tumor antigens presentation. Moreover, the synthesized nanovaccine PTh/MnO2 @M is shown to induce a significant antitumor immune response, effectively inhibit the progression of melanoma in mice, and significantly prolong the survival time of mice in vivo. This strategy aims to enhance T-cell immune responses by promoting antigen presentation, leading to effective and specific cancer therapy.


Assuntos
Neoplasias , Vacinas , Camundongos , Animais , Apresentação de Antígeno , Compostos de Manganês , Óxidos , Antígenos de Neoplasias , Neoplasias/terapia
19.
Ear Nose Throat J ; : 1455613221135646, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289009

RESUMO

Solitary fibrous tumors (SFTs) are rare mesenchymal neoplasms that were initially identified in the pleura. SFTs in the nasal or paranasal sinuses are especially rare. Most SFTs exhibit indolent behavior, with a low local recurrence rate. A 39-year-old man complained of bilateral nasal congestion, hyposmia, and occasional right eye tears six months prior to hospitalization. Based on MRI and CT imaging, a total gross surgical resection was achieved. Subsequently, postsurgical histopathological examinations were conducted. Under the microscope, pathological mitotic bodies were visible (<5 mitoses per 2 mm2). The immunohistochemical staining results revealed that tumor cells were positive for CD34, BCL-2, STAT-6, and Ki-67 (<5%) but negative for EMA, S-100, PR, GFAP, and SMA. Based on these findings, the patient was diagnosed with SFT.

20.
Biomaterials ; 287: 121628, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35704965

RESUMO

Cancer vaccines-based cancer immunotherapy has drawn widespread concern. However, insufficient cancer antigens and inefficient antigen presentation lead to low immune response rate, which greatly restrict the practical application of cancer vaccines. Here, inspired by intracellular proteasome-mediated protein degradation pathway, we report an antigen presentation simplification strategy by extracellular degradation of antigen proteins into peptides with proteolytic enzyme for improving the utilization of cancer antigens and arousing restricted cancer immunity. The pre-degraded antigen peptides are first validated to exhibit an increased capacity on antigen-presenting cell (APC) stimulation compared with proteins and still reserve antigen specificity and major histocompatibility complex (MHC) affinity. Furthermore, by coordinating the pre-degraded peptides with calcium phosphate nanoparticles (CaP), a CaP-peptide vaccine (CaP-Pep) is constructed, which is verified to induce an efficient personalized immune response in vivo for multi-model anti-cancer therapy. Notably, this bioinspired strategy based on extracellular enzymatic hydrolysis for vaccine construction is not only applicable for multiple types of cancers, but also shows great potential in expanding immunology fields and translational medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA