Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1536(1): 151-166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751225

RESUMO

Swiftly halting ongoing motor actions is essential to react to unforeseen and potentially perilous circumstances. However, the neural bases subtending the complex interplay between emotions and motor control have been scarcely investigated. Here, we used an emotional stop signal task (SST) to investigate whether specific neural circuits engaged by action suppression are differently modulated by emotional signals with respect to neutral ones. Participants performed an SST before and after the administration of one session of repetitive transcranial magnetic stimulation (rTMS) over the pre-supplementary motor cortex (pre-SMA), the right inferior frontal gyrus (rIFG), and the left primary motor cortex (lM1). Results show that rTMS over the pre-SMA improved the ability to inhibit prepotent action (i.e., better action control) when emotional stimuli were presented. In contrast, action control in a neutral context was fostered by rTMS over the rIFG. No changes were observed after lM1 stimulation. Intriguingly, individuals with higher impulsivity traits exhibited enhanced motor control when facing neutral stimuli following rIFG stimulation. These results further our understanding of the interplay between emotions and motor functions, shedding light on the selective modulation of neural pathways underpinning these processes.


Assuntos
Emoções , Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Emoções/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem
2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255937

RESUMO

Fear extinction is a phenomenon that involves a gradual reduction in conditioned fear responses through repeated exposure to fear-inducing cues. Functional brain connectivity assessments, such as functional magnetic resonance imaging (fMRI), provide valuable insights into how brain regions communicate during these processes. Stress, a ubiquitous aspect of life, influences fear learning and extinction by changing the activity of the amygdala, prefrontal cortex, and hippocampus, leading to enhanced fear responses and/or impaired extinction. Glucocorticoid receptors (GRs) are key to the stress response and show a dual function in fear regulation: while they enhance the consolidation of fear memories, they also facilitate extinction. Accordingly, GR dysregulation is associated with anxiety and mood disorders. Recent advancements in cognitive neuroscience underscore the need for a comprehensive understanding that integrates perspectives from the molecular, cellular, and systems levels. In particular, neuropharmacology provides valuable insights into neurotransmitter and receptor systems, aiding the investigation of mechanisms underlying fear regulation and potential therapeutic targets. A notable player in this context is cortisol, a key stress hormone, which significantly influences both fear memory reconsolidation and extinction processes. Gaining a thorough understanding of these intricate interactions has implications in terms of addressing psychiatric disorders related to stress. This review sheds light on the complex interactions between cognitive processes, emotions, and their neural bases. In this endeavor, our aim is to reshape the comprehension of fear, stress, and their implications for emotional well-being, ultimately aiding in the development of therapeutic interventions.


Assuntos
Medo , Receptores de Glucocorticoides , Humanos , Extinção Psicológica , Aprendizagem , Emoções , Hidrolases
4.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983000

RESUMO

Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.


Assuntos
Medo , N-Metilaspartato , Humanos , Medo/fisiologia , Endocanabinoides/fisiologia , Extinção Psicológica/fisiologia , Norepinefrina , Transmissão Sináptica/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Front Behav Neurosci ; 16: 998714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248028

RESUMO

Emotions are able to impact our ability to control our behaviors. However, it is not clear whether emotions play a detrimental or an advantageous effect on action control and whether the valence of the emotional stimuli differently affects such motor abilities. One way to measure reactive inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright a response to the presentation of a stop signal by means of the stop signal reaction times (SSRT). Impaired as well as facilitated action control has been found when faced with emotional stimuli such as stop signals in SSTs and mixed results were observed for positive versus negative stimuli. Here, we aimed to investigate these unresolved issues more deeply. Action control capabilities were tested in 60 participants by means of a SST, in which the stop signals were represented by a fearful and a happy body posture together with their neutral counterpart. Results showed that both positive and negative body postures enhanced the ability to suppress an ongoing action compared to neutral body postures. These results demonstrate that emotional valence-independent emotional stimuli facilitate action control and suggest that emotional stimuli may trigger increased sensory representation and/or attentional processing that may have promote stop-signal processing and hence improved inhibitory performance.

6.
Front Behav Neurosci ; 16: 946263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941933

RESUMO

Since the dawn of cognitive neuroscience, emotions have been recognized to impact on several executive processes, such as action inhibition. However, the complex interplay between emotional stimuli and action control is not yet fully understood. One way to measure inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright an action to the presentation of a stop signal by means of the stop-signal reaction times (SSRTs). Impaired as well as facilitated action control has been found when faced with intrinsic emotional stimuli as stop signals in SSTs. Here, we aimed at investigating more deeply the power of negative stimuli to influence our action control, testing the hypothesis that a previously neutral stimulus [i.e., the image of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)], which has been conditioned through vicarious fear learning, has the same impact on reactive action inhibition performance as an intrinsically negative stimulus (i.e., a fearful face or body). Action control capabilities were tested in 90 participants by means of a SST, in which the stop signals were represented by different negative stimuli. Results showed that the SARS-CoV-2 image enhanced the ability to suppress an ongoing action similarly to observing fearful facial expressions or fearful body postures. Interestingly, we found that this effect was predicted by impulsivity traits: for example, the less self-control the participants had, the less they showed emotional facilitation for inhibitory performance. These results demonstrated that vicarious fear learning has a critical impact on cognitive abilities, making a neutral image as threatening as phylogenetically innate negative stimuli and able to impact on our behavioral control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA