Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
ACS Med Chem Lett ; 15(7): 1151-1158, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39015284

RESUMO

MUS81 is a structure-selective endonuclease that cleaves various branched DNA structures arising from natural physiological processes such as homologous recombination and mitosis. Due to this, MUS81 is able to relieve replication stress, and its function has been reported to be critical to the survival of many cancers, particularly those with dysfunctional DNA-repair machinery. There is therefore interest in MUS81 as a cancer drug target, yet there are currently few small molecule inhibitors of this enzyme reported, and no liganded crystal structures are available to guide hit optimization. Here we report the fragment-based discovery of novel small molecule MUS81 inhibitors with sub-µM biochemical activity. These inhibitors were used to develop a novel crystal system, providing the first structural insight into the inhibition of MUS81 with small molecules.

2.
J Med Chem ; 67(11): 8962-8987, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38748070

RESUMO

Dysregulation of histone methyl transferase nuclear receptor-binding SET domain 2 (NSD2) has been implicated in several hematological and solid malignancies. NSD2 is a large multidomain protein that carries histone writing and histone reading functions. To date, identifying inhibitors of the enzymatic activity of NSD2 has proven challenging in terms of potency and SET domain selectivity. Inhibition of the NSD2-PWWP1 domain using small molecules has been considered as an alternative approach to reduce NSD2-unregulated activity. In this article, we present novel computational chemistry approaches, encompassing free energy perturbation coupled to machine learning (FEP/ML) models as well as virtual screening (VS) activities, to identify high-affinity NSD2 PWWP1 binders. Through these activities, we have identified the most potent NSD2-PWWP1 binder reported so far in the literature: compound 34 (pIC50 = 8.2). The compounds identified herein represent useful tools for studying the role of PWWP1 domains for inhibition of human NSD2.


Assuntos
Desenho de Fármacos , Histona-Lisina N-Metiltransferase , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/química , Ligantes , Humanos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Aprendizado de Máquina , Modelos Moleculares , Domínios Proteicos
3.
Bioorg Chem ; 119: 105540, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902646

RESUMO

Liver X Receptors (LXRs) are members of the nuclear receptor family, and they play significant role in lipid and cholesterol metabolism. Moreover, they are key regulators of several inflammatory pathways. Pharmacological modulation of LXRs holds great potential in treatment of metabolic diseases, neurodegenerative diseases, and cancer. We were the first group to identify LXR inverse agonists SR9238 (6) and SR9243 (7) and demonstrate their potential utility in treating liver diseases and cancer. Here, we present the results of structure-activity relationship (SAR) studies, based around SR9238 (6) and SR9243 (7). This study led to identification of 16, 17, 19, and 38, which were more potent inverse agonists than SR9238 (6) and SR9243 (7) and inhibited expression of the fatty acid synthase gene in DU145 cells. We previously demonstrated that inhibition of FASN is correlated to the anticancer activity of SR9243 (7) and this suggests that new inverse agonists have great potential as anticancer agents. We identified compounds with distinct selectivity toward both LXR isoforms, which can be excellent tools to study the pharmacology of both isoforms. We employed molecular dynamic (MD) simulations to better understand the molecular mechanism underlying inverse agonist activity and to guide our future design.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Receptores X do Fígado/agonistas , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
4.
J Med Chem ; 64(19): 14498-14512, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570508

RESUMO

Poly-ADP-ribose-polymerase (PARP) inhibitors have achieved regulatory approval in oncology for homologous recombination repair deficient tumors including BRCA mutation. However, some have failed in combination with first-line chemotherapies, usually due to overlapping hematological toxicities. Currently approved PARP inhibitors lack selectivity for PARP1 over PARP2 and some other 16 PARP family members, and we hypothesized that this could contribute to toxicity. Recent literature has demonstrated that PARP1 inhibition and PARP1-DNA trapping are key for driving efficacy in a BRCA mutant background. Herein, we describe the structure- and property-based design of 25 (AZD5305), a potent and selective PARP1 inhibitor and PARP1-DNA trapper with excellent in vivo efficacy in a BRCA mutant HBCx-17 PDX model. Compound 25 is highly selective for PARP1 over other PARP family members, with good secondary pharmacology and physicochemical properties and excellent pharmacokinetics in preclinical species, with reduced effects on human bone marrow progenitor cells in vitro.


Assuntos
DNA , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Humanos , Cristalografia por Raios X , DNA/química , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Especificidade por Substrato
5.
J Med Chem ; 64(18): 13327-13355, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34469137

RESUMO

Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure-activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo[3.2.1]octane-pyrazole sulfonamide 50 (ARN19689), which was found to inhibit human NAAA in the low nanomolar range (IC50 = 0.042 µM) with a non-covalent mechanism of action. In light of its favorable biochemical, in vitro and in vivo drug-like profile, sulfonamide 50 could be regarded as a promising pharmacological tool to be further investigated in the field of inflammatory conditions.


Assuntos
Amidoidrolases/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Pirazóis/farmacologia , Tropanos/farmacologia , Amidoidrolases/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacocinética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Pirazóis/síntese química , Pirazóis/metabolismo , Pirazóis/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tropanos/síntese química , Tropanos/metabolismo , Tropanos/farmacocinética
6.
RSC Med Chem ; 12(4): 448-471, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33937776

RESUMO

Aliphatic three- and four-membered rings including cyclopropanes, cyclobutanes, oxetanes, azetidines and bicyclo[1.1.1]pentanes have been increasingly exploited in medicinal chemistry for their beneficial physicochemical properties and applications as functional group bioisosteres. This review provides a historical perspective and comparative up to date overview of commonly applied small rings, exemplifying key principles with recent literature examples. In addition to describing the merits and advantages of each ring system, potential hazards and liabilities are also illustrated and explained, including any significant chemical or metabolic stability and toxicity risks.

7.
ACS Med Chem Lett ; 12(2): 302-308, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33603979

RESUMO

The MEK1 kinase plays a critical role in key cellular processes, and as such, its dysfunction is strongly linked to several human diseases, particularly cancer. MEK1 has consequently received considerable attention as a drug target, and a significant number of small-molecule inhibitors of this kinase have been reported. The majority of these inhibitors target an allosteric pocket proximal to the ATP binding site which has proven to be highly druggable, with four allosteric MEK1 inhibitors approved to date. Despite the significant attention that the MEK1 allosteric site has received, chemotypes which have been shown structurally to bind to this site are limited. With the aim of discovering novel allosteric MEK1 inhibitors using a fragment-based approach, we report here a screening method which resulted in the discovery of multiple allosteric MEK1 binders, one series of which was optimized to sub-µM affinity for MEK1 with promising physicochemical and ADMET properties.

8.
J Med Chem ; 63(19): 11169-11194, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32946228

RESUMO

Cystic fibrosis (CF) is a life-threatening autosomal recessive disease, caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel. CFTR modulators have been reported to address the basic defects associated with CF-causing mutations, partially restoring the CFTR function in terms of protein processing and/or channel gating. Small-molecule compounds, called potentiators, are known to ameliorate the gating defect. In this study, we describe the identification of the 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole core as a novel chemotype of potentiators. In-depth structure-activity relationship studies led to the discovery of enantiomerically pure 39 endowed with a good efficacy in rescuing the gating defect of F508del- and G551D-CFTR and a promising in vitro druglike profile. The in vivo characterization of γ-carboline 39 showed considerable exposure levels and good oral bioavailability, with detectable distribution to the lungs after oral administration to rats. Overall, these findings may represent an encouraging starting point to further expand this chemical class, adding a new chemotype to the existing classes of CFTR potentiators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Indóis/farmacologia , Animais , Humanos , Indóis/química , Masculino , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
9.
Sci Adv ; 6(8): eaay9669, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32128418

RESUMO

F508del, the most frequent mutation causing cystic fibrosis (CF), results in mistrafficking and premature degradation of the CFTR chloride channel. Small molecules named correctors may rescue F508del-CFTR and therefore represent promising drugs to target the basic defect in CF. We screened a carefully designed chemical library to find F508del-CFTR correctors. The initial active compound resulting from the primary screening underwent extensive chemical optimization. The final compound, ARN23765, showed an extremely high potency in bronchial epithelial cells from F508del homozygous patients, with an EC50 of 38 picomolar, which is more than 5000-fold lower compared to presently available corrector drugs. ARN23765 also showed high efficacy, synergy with other types of correctors, and compatibility with chronic VX-770 potentiator. Besides being a promising drug, particularly suited for drug combinations, ARN23765 represents a high-affinity probe for CFTR structure-function studies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Mutantes/metabolismo , Preparações Farmacêuticas/metabolismo , Brônquios/patologia , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células Epiteliais/metabolismo , Ensaios de Triagem em Larga Escala , Humanos
10.
J Med Chem ; 60(5): 1928-1945, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28135086

RESUMO

Sirtuins (SIRTs) are NAD-dependent deacylases, known to be involved in a variety of pathophysiological processes and thus remain promising therapeutic targets for further validation. Previously, we reported a novel thienopyrimidinone SIRT2 inhibitor with good potency and excellent selectivity for SIRT2. Herein, we report an extensive SAR study of this chemical series and identify the key pharmacophoric elements and physiochemical properties that underpin the excellent activity observed. New analogues have been identified with submicromolar SIRT2 inhibtory activity and good to excellent SIRT2 subtype-selectivity. Importantly, we report a cocrystal structure of one of our compounds (29c) bound to SIRT2. This reveals our series to induce the formation of a previously reported selectivity pocket but to bind in an inverted fashion to what might be intuitively expected. We believe these findings will contribute significantly to an understanding of the mechanism of action of SIRT2 inhibitors and to the identification of refined, second generation inhibitors.


Assuntos
Sirtuína 2/antagonistas & inibidores , Tienopiridinas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tienopiridinas/química
11.
ChemMedChem ; 10(1): 69-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25395356

RESUMO

Sirtuins, NAD(+) -dependent histone deacetylases (HDACs), have recently emerged as potential therapeutic targets for the treatment of a variety of diseases. The discovery of potent and isoform-selective inhibitors of this enzyme family should provide chemical tools to help determine the roles of these targets and validate their therapeutic value. Herein, we report the discovery of a novel class of highly selective SIRT2 inhibitors, identified by pharmacophore screening. We report the identification and validation of 3-((2-methoxynaphthalen-1-yl)methyl)-7-((pyridin-3-ylmethyl)amino)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (ICL-SIRT078), a substrate-competitive SIRT2 inhibitor with a Ki value of 0.62 ± 0.15 µM and more than 50-fold selectivity against SIRT1, 3 and 5. Treatment of MCF-7 breast cancer cells with ICL-SIRT078 results in hyperacetylation of α-tubulin, an established SIRT2 biomarker, at doses comparable with the biochemical IC50 data, while suppressing MCF-7 proliferation at higher concentrations. In concordance with the recent reports that suggest SIRT2 inhibition is a potential strategy for the treatment of Parkinson's disease, we find that compound ICL-SIRT078 has a significant neuroprotective effect in a lactacystin-induced model of Parkinsonian neuronal cell death in the N27 cell line. These results encourage further investigation into the effects of ICL-SIRT078, or an optimised derivative thereof, as a candidate neuroprotective agent in in vivo models of Parkinson's disease.


Assuntos
Inibidores de Histona Desacetilases/química , Fármacos Neuroprotetores/química , Pirimidinonas/química , Sirtuína 2/antagonistas & inibidores , Tiofenos/química , Animais , Sítios de Ligação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Ratos , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Tiofenos/farmacologia , Tiofenos/uso terapêutico
12.
Bioorg Med Chem Lett ; 24(16): 3974-8, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24997685

RESUMO

Neurotensin (NT) is an endogenous tridecapeptide found in the central nervous system (CNS) and in peripheral tissues. Neurotensin exerts a wide range of physiological effects and it has been found to play a critical role in a number of human diseases, such as schizophrenia, Parkinson's disease and drug addiction. The discovery of small-molecule non-peptide neurotensin receptor (NTSR) modulators would represent an important breakthrough as such compounds could be used as pharmacological tools, to further decipher the cellular functions of neurotensin, and potentially as therapeutic agents to treat human disease. Herein, we report the identification of non-peptide low-micromolar neurotensin receptor 1 (NTSR1) full agonists, discovered through structural optimization of the known NTSR1 partial agonist 1. In vitro cellular screenings, based on an intracellular Ca(2+) mobilization assay, revealed our best hit molecule 8 (SR-12062) to have an EC50 of 2 µM at NTSR1 with full agonist behaviour (Emax=100%), showing a higher efficacy and ∼90-fold potency improvement compared to parent compound 1 (EC50=178 µM; Emax=17%).


Assuntos
Descoberta de Drogas , Indóis/farmacologia , Receptores de Neurotensina/agonistas , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade
13.
Nat Prod Rep ; 30(5): 605-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23396528

RESUMO

Epigenetic processes are complex regulatory transcriptional pathways that underpin fundamental physiology and are implicated in the aetiology of many diseases. Small molecule modulators of key epigenetic targets will be central in the study of these intricate networks as well as providing highly useful start points for drug discovery efforts. In this review we will give our perspective on the current status of natural product epigenetic modulators, highlighting the limitations, challenges and opportunities for currently identified molecules, as well as potential strategies for novel compound discovery moving forward.


Assuntos
Produtos Biológicos , Epigenômica , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Desenho de Fármacos , Descoberta de Drogas , Estrutura Molecular
14.
Medchemcomm ; (3)2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24340169

RESUMO

Isoform selective inhibitors of the sirtuins (NAD+-dependent histone deacetylases) should enable an in depth study of the molecular biology underpinning these targets and how they are deregulated in diseases such as cancer and neurodegeneration. Herein, we present the discovery of structurally novel SIRT2 inhibitors. Hit molecule 8 was discovered through the chemical synthesis and biological characterization of a small-molecule compound library based around the 10,11-dihydro-5H-dibenz[b,f]azepine scaffold. In vitro screening assays revealed compound 8 to have an IC50 of 18 µM against SIRT2 and to exhibit more than 30-fold selectivity compared to SIRT1. Cellular assays, performed on MCF-7 cells, confirmed the in vitro selectivity and showed hit 8 to have antiproliferative activity at a concentration of 30 µM. Computational studies were performed to predict the SIRT2 binding mode and to rationalise the observed selectivity.

15.
Org Biomol Chem ; 10(3): 512-5, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22120851

RESUMO

A synthetic route towards a number of novel IBiox N-heterocyclic carbene (NHC) ligands has been developed. The resulting ligands have restricted flexibility and high steric demand. Preliminary studies have shown these ligands to give high levels of asymmetric induction in the copper-free allylic alkylation of cinnamyl bromide.


Assuntos
Técnicas de Química Sintética/métodos , Compostos Heterocíclicos/química , Indanos/química , Metano/análogos & derivados , Oxazóis/química , Desenho de Fármacos , Ligantes , Metano/química
16.
Mol Cancer Ther ; 9(4): 844-55, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20371709

RESUMO

SIRT proteins play an important role in the survival and drug resistance of tumor cells, especially during chemotherapy. In this study, we investigated the potency, specificity, and cellular targets of three SIRT inhibitors, Sirtinol, Salermide, and EX527. Cell proliferative and cell cycle analyses showed that Sirtinol and Salermide, but not EX527, were effective in inducing cell death at concentrations of 50 micromol/L or over in MCF-7 cells. Instead, EX527 caused cell cycle arrest at G(1) at comparable concentrations. In vitro SIRT assays using a p53 peptide substrate showed that all three compounds are potent SIRT1/2 inhibitors, with EX527 having the highest inhibitory activity for SIRT1. Computational docking analysis showed that Sirtinol and Salermide have high degrees of selectivity for SIRT1/2, whereas EX527 has high specificity for SIRT1 but not SIRT2. Consistently, Sirtinol and Salermide, but not EX527, treatment resulted in the in vivo acetylation of the SIRT1/2 target p53 and SIRT2 target tubulin in MCF-7 cells, suggesting that EX527 is ineffective in inhibiting SIRT2 and that p53 mediates the cytotoxic function of Sirtinol and Salermide. Studies using breast carcinoma cell lines and p53-deficient mouse fibroblasts confirmed that p53 is essential for the Sirtinol and Salermide-induced apoptosis. Further, we showed using small interfering RNA that silencing both SIRTs, but not SIRT1 and SIRT2 individually, can induce cell death in MCF-7 cells. Together, our results identify the specificity and cellular targets of these novel inhibitors and suggest that SIRT inhibitors require combined targeting of both SIRT1 and SIRT2 to induce p53 acetylation and cell death. Mol Cancer Ther; 9(4); 844-55. (c)2010 AACR.


Assuntos
Benzamidas/farmacologia , Carbazóis/farmacologia , Naftóis/farmacologia , Fenilpropionatos/farmacologia , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fase G1/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Lisina/metabolismo , Modelos Moleculares , Paclitaxel/farmacologia , Estrutura Secundária de Proteína , Sirtuína 1/química , Sirtuína 2/química , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA