Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cells ; 13(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39329760

RESUMO

Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.


Assuntos
Cirrose Hepática Biliar , Humanos , Cirrose Hepática Biliar/terapia , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/patologia , Ácidos e Sais Biliares/metabolismo , Animais , Ácido Ursodesoxicólico/uso terapêutico , Ensaios Clínicos como Assunto , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/uso terapêutico
2.
Pharmacol Res ; 208: 107403, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39265668

RESUMO

Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are chronic disorders characterized by dysregulated immune response and persistent inflammation. Recent studies suggest that bile acid receptors, particularly GPBAR1, and the transcription factor RORγt play critical roles in modulating intestinal inflammation. This study evaluates the therapeutic potential of PBT002, a dual GPBAR1 agonist and RORγt inverse agonist, in IBD models. The effects of PBT002 were assessed through in vitro and in vivo experiments. Macrophages and T lymphocytes obtained from the buffy coat were exposed to PBT002 to evaluate its immunomodulatory activity. The beneficial effects in vivo were evaluated in mouse models of colitis induced by TNBS, DSS or DSS + IL-23 using also a Gpbar1 knock-out male mice. PBT002 exhibited an EC50 of 1.2 µM for GPBAR1 and an IC50 of 2.8 µM for RORγt. In in vitro, PBT002 modulated macrophage polarization towards an anti-inflammatory M2 phenotype and reduced Th17 cell markers while increasing Treg markers. In the TNBS-induced colitis model, PBT002 reduced weight loss, CDAI, and colon damage, while it modulated cytokine gene expression towards an anti-inflammatory profile. In GPBAR1-/-, the anti-inflammatory effects of PBT002 were attenuated, indicating partial GPBAR1 dependence. RNA sequencing revealed significant modulation of inflammatory pathways by PBT002. In DSS+IL-23 induced colitis, PBT002 mitigated disease exacerbation, reducing pro-inflammatory cytokine levels and immune cell infiltration. In conclusion, PBT002, a GPBAR1 agonist and RORγt inverse agonist, modulates both the innate and adaptive immune responses to reduce inflammation and disease severity in models of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Receptores Acoplados a Proteínas G , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Masculino , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Camundongos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Agonismo Inverso de Drogas , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças
3.
Front Chem ; 12: 1425867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086986

RESUMO

BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays. Compound 1 resulted as the most promising of the series and was subjected to further pharmacological investigation, together with stability evaluation and cell permeation assessment. We have proved by LCMS analysis that compound 1 is hydrolyzed in mice releasing clofibric acid and BAR505, the oxidized metabolite of BAR502, endowed with retained dual FXR/GPBAR1 activity.

4.
Prog Lipid Res ; 95: 101291, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39122016

RESUMO

Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.


Assuntos
Ácidos e Sais Biliares , Humanos , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/imunologia , Animais , Microbioma Gastrointestinal/imunologia
5.
Biochem Pharmacol ; 223: 116134, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38494064

RESUMO

The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRß subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.


Assuntos
Interleucina-6 , Receptores de Citocinas , Humanos , Carcinogênese , Fator Inibidor de Leucemia/metabolismo , Receptores de Citocinas/metabolismo , Receptores de OSM-LIF
7.
Biochem Pharmacol ; 218: 115900, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37926268

RESUMO

While patients with nonalcoholic fatty liver disease (NAFLD) are at increased risk to develop clinically meaningful cardiovascular diseases (CVD), there are no approved drug designed to target the liver and CVD component of NAFLD. GPBAR1, also known as TGR5, is a G protein coupled receptor for secondary bile acids. In this study we have investigated the effect of GPBAR1 activation by BAR501, a selective GPBAR1 agonist, in Apolipoprotein E deficient (ApoE-/-) mice fed a high fat diet and fructose (Western diet), a validated model of NAFLD-associated atherosclerosis. Using aortic samples from patients who underwent surgery for abdominal aneurism, and ex vivo experiments with endothelial cells and human macrophages, we were able to co-localize the expression of GPBAR1 in CD14+ and PECAM1+ cells. Similar findings were observed in the aortic plaques from ApoE-/- mice. Treating ApoE-/- mice with BAR501, 30 mg/kg for 14 weeks, attenuated the body weight gain while ameliorated the insulin sensitivity by increasing the plasma concentrations of GLP-1 and FGF15. Activation of GPBAR1 reduced the aorta thickness and severity of atherosclerotic lesions and decreased the amount of plaques macrophages. Treating ApoE-/- mice reshaped the aortic transcriptome promoting the expression of anti-inflammatory genes, including IL-10, as also confirmed by tSNE analysis of spleen-derived macrophages. Feeding ApoE-/- mice with BAR501 redirected the bile acid synthesis and the composition of the intestinal microbiota. In conclusion, GPBAR1 agonism attenuates systemic inflammation and improve metabolic profile in a genetic/dietetic model of atherosclerosis. BAR501 might be of utility in the treatment for NAFLD-related CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Doenças Cardiovasculares/complicações , Modelos Animais de Doenças , Células Endoteliais , Inflamação/tratamento farmacológico , Inflamação/complicações , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Receptores Acoplados a Proteínas G/genética
8.
J Am Heart Assoc ; 12(23): e031241, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37996988

RESUMO

BACKGROUND: Patients with nonalcoholic fatty liver disease are at increased risk to develop atherosclerotic cardiovascular diseases. FXR and GPBAR1 are 2 bile acid-activated receptors exploited in the treatment of nonalcoholic fatty liver disease: whether dual GPBAR1/FXR agonists synergize with statins in the treatment of the liver and cardiovascular components of nonalcoholic fatty liver disease is unknown. METHODS AND RESULTS: Investigations of human aortic samples obtained from patients who underwent surgery for aortic aneurysms and Gpbar1-/-, Fxr-/-, and dual Gpbar1-/-Fxr-/- mice demonstrated that GPBAR1 and FXR are expressed in the aortic wall and regulate endothelial cell/macrophage interactions. The expression of GPBAR1 in the human endothelium correlated with the expression of inflammatory biomarkers. Mice lacking Fxr and Gpbar1-/-/Fxr-/- display hypotension and aortic inflammation, along with altered intestinal permeability that deteriorates with age, and severe dysbiosis, along with dysregulated bile acid synthesis. Vasomotor activities of aortic rings were altered by Gpbar1 and Fxr gene ablation. In apolipoprotein E-/- and wild-type mice, BAR502, a dual GPBAR1/FXR agonist, alone or in combination with atorvastatin, reduced cholesterol and low-density lipoprotein plasma levels, mitigated the development of liver steatosis and aortic plaque formation, and shifted the polarization of circulating leukocytes toward an anti-inflammatory phenotype. BAR502/atorvastatin reversed intestinal dysbiosis and dysregulated bile acid synthesis, promoting a shift of bile acid pool composition toward FXR antagonists and GPBAR1 agonists. CONCLUSIONS: FXR and GPBAR1 maintain intestinal, liver, and cardiovascular homeostasis, and their therapeutic targeting with a dual GPBAR1/FXR ligand and atorvastatin holds potential in the treatment of liver and cardiovascular components of nonalcoholic fatty liver disease.


Assuntos
Ácidos e Sais Biliares , Inibidores de Hidroximetilglutaril-CoA Redutases , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Ácidos e Sais Biliares/metabolismo , Disbiose/complicações , Disbiose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Receptores Acoplados a Proteínas G/metabolismo
9.
Cell Oncol (Dordr) ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945798

RESUMO

PURPOSE: The gastric adenocarcinoma (GC) represents the third cause of cancer-related mortality worldwide, and available therapeutic options remain sub-optimal. The Fibroblast growth factor receptors (FGFRs) are oncogenic transmembrane tyrosine kinase receptors. FGFR inhibitors have been approved for the treatment of various cancers and a STAT3-dependent regulation of FGFR4 has been documented in the H.pylori infected intestinal GC. Therefore, the modulation of FGFR4 might be useful for the treatment of GC. METHODS: To investigate wich factors could modulate FGFR4 signalling in GC, we employed RNA-seq analysis on GC patients biopsies, human patients derived organoids (PDOs) and cancer cell lines. RESULTS: We report that FGFR4 expression/function is regulated by the leukemia inhibitory factor (LIF) an IL-6 related oncogenic cytokine, in JAK1/STAT3 dependent manner. The transcriptomic analysis revealed a direct correlation between the expression of LIFR and FGFR4 in the tissue of an exploratory cohort of 31 GC and confirmed these findings by two external validation cohorts of GC. A LIFR inhibitor (LIR-201) abrogates STAT3 phosphorylation induced by LIF as well as recruitment of pSTAT3 to the promoter of FGFR4. Furthermore, inhibition of FGFR4 by roblitinib or siRNA abrogates STAT3 phosphorylation and oncogentic effects of LIF in GC cells, indicating that FGFR4 is a downstream target of LIF/LIFR complex. Treating cells with LIR-201 abrogates oncogenic potential of FGF19, the physiological ligand of FGFR4. CONCLUSIONS: Together these data unreveal a previously unregnized regulatory mechanism of FGFR4 by LIF/LIFR and demonstrate that LIF and FGF19 converge on the regulation of oncogenic STAT3 in GC cells.

10.
Front Oncol ; 13: 1140730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998446

RESUMO

Introduction: The leukemia inhibitory factor (LIF), is a cytokine belonging to IL-6 family, whose overexpression correlate with poor prognosis in cancer patients, including pancreatic ductal adenocarcinoma (PDAC). LIF signaling is mediate by its binding to the heterodimeric LIF receptor (LIFR) complex formed by the LIFR receptor and Gp130, leading to JAK1/STAT3 activation. Bile acids are steroid that modulates the expression/activity of membrane and nuclear receptors, including the Farnesoid-X-Receptor (FXR) and G Protein Bile Acid Activated Receptor (GPBAR1). Methods: Herein we have investigated whether ligands to FXR and GPBAR1 modulate LIF/LIFR pathway in PDAC cells and whether these receptors are expressed in human neoplastic tissues. Results: The transcriptome analysis of a cohort of PDCA patients revealed that expression of LIF and LIFR is increased in the neoplastic tissue in comparison to paired non-neoplastic tissues. By in vitro assay we found that both primary and secondary bile acids exert a weak antagonistic effect on LIF/LIFR signaling. In contrast, BAR502 a non-bile acid steroidal dual FXR and GPBAR1 ligand, potently inhibits binding of LIF to LIFR with an IC50 of 3.8 µM. Discussion: BAR502 reverses the pattern LIF-induced in a FXR and GPBAR1 independent manner, suggesting a potential role for BAR502 in the treatment of LIFR overexpressing-PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA