Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Cancer ; 4(6): 812-828, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277530

RESUMO

The Hippo pathway is a key growth control pathway that is conserved across species. The downstream effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), are frequently activated in cancers to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs (transcriptional enhanced associate domain) are central to their transcriptional activities, we discovered a potent small-molecule inhibitor (SMI), GNE-7883, that allosterically blocks the interactions between YAP/TAZ and all human TEAD paralogs through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models and achieves strong antitumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes both intrinsic and acquired resistance to KRAS (Kirsten rat sarcoma viral oncogene homolog) G12C inhibitors in diverse preclinical models through the inhibition of YAP/TAZ activation. Taken together, this work demonstrates the activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Medicina de Precisão , Fatores de Transcrição/metabolismo , Transdução de Sinais
2.
J Chem Inf Model ; 62(3): 472-485, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029985

RESUMO

Nuclear magnetic resonance (NMR) data from NOESY (nuclear Overhauser enhancement spectroscopy) and ROESY (rotating frame Overhauser enhancement spectroscopy) experiments can easily be combined with distance geometry (DG) based conformer generators by modifying the molecular distance bounds matrix. In this work, we extend the modern DG based conformer generator ETKDG, which has been shown to reproduce experimental crystal structures from small molecules to large macrocycles well, to include NOE-derived interproton distances. In noeETKDG, the experimentally derived interproton distances are incorporated into the distance bounds matrix as loose upper (or lower) bounds to generate large conformer sets. Various subselection techniques can subsequently be applied to yield a conformer bundle that best reproduces the NOE data. The approach is benchmarked using a set of 24 (mostly) cyclic peptides for which NOE-derived distances as well as reference solution structures obtained by other software are available. With respect to other packages currently available, the advantages of noeETKDG are its speed and that no prior force-field parametrization is required, which is especially useful for peptides with unnatural amino acids. The resulting conformer bundles can be further processed with the use of structural refinement techniques to improve the modeling of the intramolecular nonbonded interactions. The noeETKDG code is released as a fully open-source software package available at www.github.com/rinikerlab/customETKDG.


Assuntos
Peptídeos Cíclicos , Peptídeos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica
3.
J Med Chem ; 60(24): 10056-10070, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29166018

RESUMO

USP7 is a deubiquitinase implicated in destabilizing the tumor suppressor p53, and for this reason it has gained increasing attention as a potential oncology target for small molecule inhibitors. Herein we describe the biophysical, biochemical, and computational approaches that led to the identification of 4-(2-aminopyridin-3-yl)phenol compounds described by Kategaya ( Nature 2017 , 550 , 534 - 538 ) as specific inhibitors of USP7. Fragment based lead discovery (FBLD) by NMR combined with virtual screening and re-mining of biochemical high-throughput screening (HTS) hits led to the discovery of a series of ligands that bind in the "palm" region of the catalytic domain of USP7 and inhibit its catalytic activity. These ligands were then optimized by structure-based design to yield cell-active molecules with reasonable physical properties. This discovery process not only involved multiple techniques working in concert but also illustrated a unique way in which hits from orthogonal screening approaches complemented each other for lead identification.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Aminopiridinas/química , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Simulação por Computador , Cristalografia por Raios X , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Oxidiazóis/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Peptidase 7 Específica de Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/metabolismo
4.
Nature ; 550(7677): 534-538, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29045385

RESUMO

The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.


Assuntos
Aminopiridinas/química , Aminopiridinas/farmacologia , Indazóis/química , Indazóis/farmacologia , Fenóis/química , Fenóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Ubiquitina/metabolismo , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos SCID , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Especificidade por Substrato , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/deficiência , Peptidase 7 Específica de Ubiquitina/metabolismo
5.
Nat Struct Mol Biol ; 24(10): 848-856, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825733

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma LDL cholesterol (LDL-c) levels by promoting the degradation of liver LDL receptors (LDLRs). Antibodies that inhibit PCSK9 binding to the EGF(A) domain of the LDLR are effective in lowering LDL-c. However, the discovery of small-molecule therapeutics is hampered by difficulty in targeting the relatively flat EGF(A)-binding site on PCSK9. Here we demonstrate that it is possible to target this site, based on the finding that the PCSK9 P' helix displays conformational flexibility. As a consequence, the vacated N-terminal groove of PCSK9, which is adjacent to the EGF(A)-binding site, is in fact accessible to small peptides. In phage-display experiments, the EGF(A)-mimicking peptide Pep2-8 was used as an anchor peptide for the attachment of an extension peptide library directed toward the groove site. Guided by structural information, we further engineered the identified groove-binding peptides into antagonists, which encroach on the EGF(A)-binding site and inhibit LDLR binding.


Assuntos
Inibidores Enzimáticos/metabolismo , Inibidores de PCSK9 , Peptídeos/metabolismo , Pró-Proteína Convertase 9/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/isolamento & purificação , Humanos , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/isolamento & purificação
6.
Bioorg Med Chem Lett ; 27(3): 632-635, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025004

RESUMO

Reactive metabolites have been putatively linked to many adverse drug reactions including idiosyncratic toxicities for a number of drugs with black box warnings or withdrawn from the market. Therefore, it is desirable to minimize the risk of reactive metabolite formation for lead molecules in optimization, in particular for non-life threatening chronic disease, to maximize benefit to risk ratio. This article describes our effort in addressing reactive metabolite issues for a series of 3-amino-2-pyridone inhibitors of BTK, e.g. compound 1 has a value of 459pmol/mg protein in the microsomal covalent binding assay. Parallel approaches were taken to successfully resolve the issues: establishment of a predictive screening assay with correlation association of covalent binding assay, identification of the origin of reactive metabolite formation using MS/MS analysis of HLM as well as isolation and characterization of GSH adducts. This ultimately led to the discovery of compound 7 (RN941) with significantly reduced covalent binding of 26pmol/mg protein.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridonas/química , Tirosina Quinase da Agamaglobulinemia , Glutationa/química , Espectroscopia de Ressonância Magnética , Microssomos/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Piridonas/metabolismo , Espectrometria de Massas em Tandem
7.
Structure ; 24(8): 1335-1345, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452404

RESUMO

The deubiquitinating enzyme USP7 has a pivotal role in regulating the stability of proteins involved in fundamental cellular processes of normal biology and disease. Despite the importance of USP7, the mechanisms underlying substrate recognition and catalytic activation are poorly understood. Here we present structural, biochemical, and biophysical analyses elucidating the molecular mechanism by which the C-terminal 19 amino acids of USP7 (residues 1084-1102) enhance the ubiquitin cleavage activity of the deubiquitinase (DUB) domain. Our data demonstrate that the C-terminal peptide binds the activation cleft in the catalytic domain and stabilizes the catalytically competent conformation of USP7. Additional structures of longer fragments of USP7, as well as solution studies, provide insight into full-length USP7, the role of the UBL domains, and demonstrate that both substrate recognition and deubiquitinase activity are highly regulated by the catalytic and noncatalytic domains of USP7, a feature that could be essential for the proper function of multi-domain DUBs.


Assuntos
Ubiquitina Tiolesterase/química , Ubiquitina/química , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina
8.
Biomol NMR Assign ; 10(2): 345-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27386854

RESUMO

The deubiquitinase Ubiquitin Specific Protease 7 (USP7) is part of the regulatory cascade of proteins that modulates the activity of the tumor suppressor protein p53. Deubiquitination of its target Murine Double Minute 2 (MDM2) leads to increased proteosomal degradation of p53. Consequently, USP7 has emerged as an attractive oncology target because its inhibition stabilizes p53, thereby promoting p53-dependent apoptosis in cancer cells. Here we report the backbone resonance assignment for the 40.5 kDa catalytic domain of USP7.


Assuntos
Domínio Catalítico , Ressonância Magnética Nuclear Biomolecular , Ubiquitina Tiolesterase/química , Sequência de Aminoácidos , Humanos , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina
9.
J Biol Chem ; 291(31): 16292-306, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27226599

RESUMO

Doublecortin is a microtubule-associated protein produced during neurogenesis. The protein stabilizes microtubules and stimulates their polymerization, which allows migration of immature neurons to their designated location in the brain. Mutations in the gene that impair doublecortin function and cause severe brain formation disorders are located on a tandem repeat of two doublecortin domains. The molecular mechanism of action of doublecortin is only incompletely understood. Anti-doublecortin antibodies, such as the rabbit polyclonal Abcam 18732, are widely used as neurogenesis markers. Here, we report the generation and characterization of antibodies that bind to single doublecortin domains. The antibodies were used as tools to obtain structures of both domains. Four independent crystal structures of the N-terminal domain reveal several distinct open and closed conformations of the peptide linking N- and C-terminal domains, which can be related to doublecortin function. An NMR assignment and a crystal structure in complex with a camelid antibody fragment show that the doublecortin C-terminal domain adopts the same well defined ubiquitin-like fold as the N-terminal domain, despite its reported aggregation and molten globule-like properties. The antibodies' unique domain specificity also renders them ideal research tools to better understand the role of individual domains in doublecortin function. A single chain camelid antibody fragment specific for the C-terminal doublecortin domain affected microtubule binding, whereas a monoclonal mouse antibody specific for the N-terminal domain did not. Together with steric considerations, this suggests that the microtubule-interacting doublecortin domain observed in cryo-electron micrographs is the C-terminal domain rather than the N-terminal one.


Assuntos
Anticorpos Monoclonais Murinos/química , Proteínas Associadas aos Microtúbulos/química , Neuropeptídeos/química , Anticorpos de Cadeia Única/química , Animais , Camelus , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas do Domínio Duplacortina , Humanos , Camundongos , Domínios Proteicos , Estrutura Quaternária de Proteína , Coelhos
10.
Structure ; 24(4): 498-499, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27050685

RESUMO

In this issue of Structure, Castañeda et al. (2016b) use multi-disciplinary approaches including NMR techniques, small-angle neutron scattering, and docking to convincingly demonstrate that K27-linked diubiquitin is relatively rigid with unexpected similarity to the conformation of K48-linked diubiquitin bound to the UBA2 domain of hHR23a.


Assuntos
Modelos Moleculares , Ubiquitina/química , Espectroscopia de Ressonância Magnética , Espalhamento a Baixo Ângulo , Ubiquitinas/química
11.
J Biol Chem ; 289(2): 942-55, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24225950

RESUMO

PCSK9 (proprotein convertase subtilisin/kexin type 9) is a negative regulator of the hepatic LDL receptor, and clinical studies with PCSK9-inhibiting antibodies have demonstrated strong LDL-c-lowering effects. Here we screened phage-displayed peptide libraries and identified the 13-amino acid linear peptide Pep2-8 as the smallest PCSK9 inhibitor with a clearly defined mechanism of inhibition that has been described. Pep2-8 bound to PCSK9 with a KD of 0.7 µm but did not bind to other proprotein convertases. It fully restored LDL receptor surface levels and LDL particle uptake in PCSK9-treated HepG2 cells. The crystal structure of Pep2-8 bound to C-terminally truncated PCSK9 at 1.85 Å resolution showed that the peptide adopted a strand-turn-helix conformation, which is remarkably similar to its solution structure determined by NMR. Consistent with the functional binding site identified by an Ala scan of PCSK9, the structural Pep2-8 contact region of about 400 Å(2) largely overlapped with that contacted by the EGF(A) domain of the LDL receptor, suggesting a competitive inhibition mechanism. Consistent with this, Pep2-8 inhibited LDL receptor and EGF(A) domain binding to PCSK9 with IC50 values of 0.8 and 0.4 µm, respectively. Remarkably, Pep2-8 mimicked secondary structural elements of the EGF(A) domain that interact with PCSK9, notably the ß-strand and a discontinuous short α-helix, and it engaged in the same ß-sheet hydrogen bonds as EGF(A) does. Although Pep2-8 itself may not be amenable to therapeutic applications, this study demonstrates the feasibility of developing peptidic inhibitors to functionally relevant sites on PCSK9.


Assuntos
Oligopeptídeos/farmacologia , Pró-Proteína Convertases/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Biblioteca de Peptídeos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/química , Pró-Proteína Convertases/genética , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de LDL/química , Receptores de LDL/genética , Serina Endopeptidases/química , Serina Endopeptidases/genética
12.
ChemMedChem ; 8(5): 726-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23436619
13.
Proc Natl Acad Sci U S A ; 109(29): 11788-93, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22745160

RESUMO

Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo- and/or heterodimerization of MDM2 and MDMX proteins. Structural studies revealed that the inhibitors bind into and occlude the p53 pockets of MDM2 and MDMX by inducing the formation of dimeric protein complexes kept together by a dimeric small-molecule core. This mode of action effectively stabilized p53 and activated p53 signaling in cancer cells, leading to cell cycle arrest and apoptosis. Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMX-overexpressing cancers.


Assuntos
Apoptose/fisiologia , Hidantoínas/farmacologia , Modelos Moleculares , Proteínas Nucleares/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cristalização , Dimerização , Transferência Ressonante de Energia de Fluorescência , Humanos , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-mdm2/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sais de Tetrazólio , Tiazóis
14.
Proc Natl Acad Sci U S A ; 108(26): 10484-9, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670263

RESUMO

Erythroid Krüppel-like factor (EKLF) plays an important role in erythroid development by stimulating ß-globin gene expression. We have examined the details by which the minimal transactivation domain (TAD) of EKLF (EKLFTAD) interacts with several transcriptional regulatory factors. We report that EKLFTAD displays homology to the p53TAD and, like the p53TAD, can be divided into two functional subdomains (EKLFTAD1 and EKLFTAD2). Based on sequence analysis, we found that EKLFTAD2 is conserved in KLF2, KLF4, KLF5, and KLF15. In addition, we demonstrate that EKLFTAD2 binds the amino-terminal PH domain of the Tfb1/p62 subunit of TFIIH (Tfb1PH/p62PH) and four domains of CREB-binding protein/p300. The solution structure of the EKLFTAD2/Tfb1PH complex indicates that EKLFTAD2 binds Tfb1PH in an extended conformation, which is in contrast to the α-helical conformation seen for p53TAD2 in complex with Tfb1PH. These studies provide detailed mechanistic information into EKLFTAD functions as well as insights into potential interactions of the TADs of other KLF proteins. In addition, they suggest that not only have acidic TADs evolved so that they bind using different conformations on a common target, but that transitioning from a disordered to a more ordered state is not a requirement for their ability to bind multiple partners.


Assuntos
Fatores de Transcrição Kruppel-Like/química , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Clonagem Molecular , Humanos , Células K562 , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
15.
J Virol ; 85(11): 5287-300, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21450828

RESUMO

The papillomavirus E1 helicase, with the help of E2, assembles at the viral origin into a double hexamer that orchestrates replication of the viral genome. The N-terminal region (NTR) of E1 is essential for DNA replication in vivo but dispensable in vitro, suggesting that it has a regulatory function. By deletion analysis, we identified a conserved region of the E1 NTR needed for efficient replication of viral DNA. This region is predicted to form an amphipathic α-helix (AH) and shows sequence similarity to portions of the p53 and herpes simplex virus (HSV) VP16 transactivation domains known as transactivation domain 2 (TAD2) and VP16C, which fold into α-helices upon binding their target proteins, including the Tfb1/p62 (Saccharomyces cerevisiae/human) subunit of general transcription factor TFIIH. By nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC), we found that a peptide spanning the E1 AH binds Tfb1 on the same surface as TAD2/VP16C and with a comparable affinity, suggesting that it does bind as an α-helix. Furthermore, the E1 NTRs from several human papillomavirus (HPV) types could activate transcription in yeast, and to a lesser extent in mammalian cells, when fused to a heterologous DNA-binding domain. Mutation of the three conserved hydrophobic residues in the E1 AH, analogous to those in TAD2/VP16C that directly contact their target proteins, decreased transactivation activity and, importantly, also reduced by 50% the ability of E1 to support transient replication of DNA in C33A cells, at a step following assembly of the E1-E2-ori preinitiation complex. These results demonstrate the existence of a conserved TAD2/VP16C-like AH in E1 that is required for efficient replication of viral DNA.


Assuntos
DNA Helicases/metabolismo , DNA Viral/metabolismo , Papillomaviridae/fisiologia , Transativadores/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Calorimetria , DNA Helicases/genética , Análise Mutacional de DNA , Células Epiteliais/virologia , Humanos , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Transativadores/genética , Proteínas Virais/genética
16.
Blood ; 114(1): 165-73, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19411634

RESUMO

In addition to orchestrating the expression of all erythroid-specific genes, GATA-1 controls the growth, differentiation, and survival of the erythroid lineage through the regulation of genes that manipulate the cell cycle and apoptosis. The stages of mammalian erythropoiesis include global gene inactivation, nuclear condensation, and enucleation to yield circulating erythrocytes, and some of the genes whose expression are altered by GATA-1 during this process are members of the p53 pathway. In this study, we demonstrate a specific in vitro interaction between the transactivation domain of p53 (p53TAD) and a segment of the GATA-1 DNA-binding domain that includes the carboxyl-terminal zinc-finger domain. We also show by immunoprecipitation that the native GATA-1 and p53 interact in erythroid cells and that activation of p53-responsive promoters in an erythroid cell line can be inhibited by the overexpression of GATA-1. Mutational analysis reveals that GATA-1 inhibition of p53 minimally requires the segment of the GATA-1 DNA-binding domain that interacts with p53TAD. This inhibition is reciprocal, as the activation of a GATA-1-responsive promoter can be inhibited by p53. Based on these findings, we conclude that inhibition of the p53 pathway by GATA-1 may be essential for erythroid cell development and survival.


Assuntos
Fator de Transcrição GATA1/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , DNA/química , DNA/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Fator de Transcrição GATA1/química , Fator de Transcrição GATA1/genética , Humanos , Técnicas In Vitro , Substâncias Macromoleculares , Camundongos , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Dedos de Zinco
17.
Proc Natl Acad Sci U S A ; 106(18): 7408-13, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19376969

RESUMO

Several peptide hormones are initially synthesized as inactive precursors. It is only on entry of these prohormones and their processing proteases into dense core secretory granules (DCSGs) that the precursors are cleaved to generate their active forms. Prohormone convertase (PC)1/3 is a processing protease that is targeted to DCSGs. The signal for targeting PC1/3 to DCSGs resides in its carboxy-terminal tail (PC1/3(617-753)), where 3 regions (PC1/3(617-625), PC1/3(665-682), and PC1/3(711-753)) are known to aid in sorting and membrane association. In this article, we have determined a high-resolution structure of the extreme carboxy-terminal sorting domain, PC1/3(711-753) in micelles by NMR spectroscopy. PC1/3(711-753) contains 2 alpha helices located between residues 722-728 and 738-750. Functional assays demonstrate that the second helix (PC1/3(738-750)) is necessary and sufficient to target a constitutively secreted protein to granules, and that L(745) anchors a hydrophobic patch that is critical for sorting. Also, we demonstrate that calcium binding by the second helix of PC1/3(711-753) promotes aggregation of the domain via the hydrophobic patch centered on L(745). These results provide a structure-function analysis of a DCSG-sorting domain, and reveal the importance of a hydrophobic patch and calcium binding in controlling the sorting of proteins containing alpha helices to DCSGs.


Assuntos
Pró-Proteína Convertase 1/química , Vesículas Secretórias/enzimologia , Animais , Cálcio/química , Camundongos , Ressonância Magnética Nuclear Biomolecular , Pró-Proteína Convertase 1/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico
18.
Biochemistry ; 48(9): 1964-74, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19215094

RESUMO

Recycling of RNA polymerase II (RNAPII) requires dephosphorylation of the C-terminal domain (CTD) of the largest subunit of the polymerase. FCP1 enables the recycling of RNAPII via its CTD-specific phosphatase activity, which is stimulated by the RAP74 subunit of the general transcription factor TFIIF. Both the central (centFCP1) and C-terminal (cterFCP1) domains of FCP1 interact independently and specifically with the C-terminal domain of RAP74 (cterRAP74), suggesting that these interactions mediate the stimulatory effect of TFIIF on the CTD phosphatase activity of FCP1. Phosphorylation of FCP1 by casein kinase 2 on residues in its central (T584) and C-terminal (S942 and S944) domains stimulates its binding to RAP74 and its CTD phosphatase activity. To improve our understanding of the FCP1-RAP74 interactions, we previously determined the NMR structure of a complex formed by human cterRAP74 and cterFCP1. We now present the high-resolution NMR structure and thermodynamic characterization by isothermal titration calorimetry of a complex formed by the same cterRAP74 domain and a phosphorylated peptide from the central domain of human FCP1 (centFCP1-PO(4)). Comparison of the cterFCP1-cterRAP74 and centFCP1-PO(4)-cterRAP74 complexes indicates that centFCP1 and cterFCP1 both utilize hydrophobic and acidic residues to recognize the same groove of RAP74, but there are significant differences in the details of their interactions. These differences point to the adaptability of RAP74 to recognize the two regions of FCP1. Our NMR and thermodynamic studies further elucidate the complex molecular mechanism by which TFIIF and FCP1 cooperate for RNAPII recycling.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Fosfoproteínas Fosfatases/química , Fatores de Transcrição TFII/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , Homologia de Sequência de Aminoácidos , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Treonina/química , Treonina/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
19.
J Biol Chem ; 284(2): 938-44, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19004822

RESUMO

Bacteria resistant to methylmercury utilize two enzymes (MerA and MerB) to degrade methylmercury to the less toxic elemental mercury. The crucial step is the cleavage of the carbon-mercury bond of methylmercury by the organomercurial lyase (MerB). In this study, we determined high resolution crystal structures of MerB in both the free (1.76-A resolution) and mercury-bound (1.64-A resolution) states. The crystal structure of free MerB is very similar to the NMR structure, but important differences are observed when comparing the two structures. In the crystal structure, an amino-terminal alpha-helix that is not present in the NMR structure makes contact with the core region adjacent to the catalytic site. This interaction between the amino-terminal helix and the core serves to bury the active site of MerB. The crystal structures also provide detailed insights into the mechanism of carbon-mercury bond cleavage by MerB. The structures demonstrate that two conserved cysteines (Cys-96 and Cys-159) play a role in substrate binding, carbon-mercury bond cleavage, and controlled product (ionic mercury) release. In addition, the structures establish that an aspartic acid (Asp-99) in the active site plays a crucial role in the proton transfer step required for the cleavage of the carbon-mercury bond. These findings are an important step in understanding the mechanism of carbon-mercury bond cleavage by MerB.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Liases/química , Liases/metabolismo , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Liases/genética , Modelos Moleculares , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
20.
J Am Chem Soc ; 130(32): 10596-604, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18630911

RESUMO

The Herpes Simplex Virion Protein 16 (VP16) activates transcription through a series of protein/protein interactions involving its highly acidic transactivation domain (TAD). The acidic TAD of VP16 (VP16TAD) has been shown to interact with several partner proteins both in vitro and in vivo, and many of these VP16 partners also bind the acidic TAD of the mammalian tumor suppressor protein p53. For example, the TADs of VP16 and p53 (p53TAD) both interact directly with the p62/Tfb1 (human/yeast) subunit of TFIIH, and this interaction correlates with their ability to activate both the initiation and elongation phase of transcription. In this manuscript, we use NMR spectroscopy, isothermal titration calorimetery (ITC) and site-directed mutagenesis studies to characterize the interaction between the VP16TAD and Tfb1. We identify a region within the carboxyl-terminal subdomain of the VP16TAD (VP16C) that has sequence similarity with p53TAD2 and binds Tfb1 with nanomolar affinity. We determine an NMR structure of a Tfb1/VP16C complex, which represents the first high-resolution structure of the VP16TAD in complex with a target protein. The structure demonstrates that like p53TAD2, VP16C forms a 9-residue alpha-helix in complex with Tfb1. Comparison of the VP16/Tfb1and p53/Tfb1 structures clearly demonstrates how the viral activator VP16C and p53TAD2 shares numerous aspects of binding to Tfb1. Despite the similarities, important differences are observed between the p53TAD2/Tfb1 and VP16C/Tfb1 complexes, and these differences demonstrate how selected activators such as p53 depend on phosphorylation events to selectively regulate transcription.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples/química , Fator de Transcrição TFIIH/química , Proteína Supressora de Tumor p53/química , Proteína Vmw65 do Vírus do Herpes Simples/genética , Humanos , Mutação , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fator de Transcrição TFIIH/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA