Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823733

RESUMO

Polylactic acid (PLA), a polymer derived from renewable resources, is gaining increasing attention in the development of biomedical devices due to its cost-effectiveness, low immunogenicity, and biodegradability. However, its inherent hydrophobicity remains a problem, leading to poor cell adhesion features. On this basis, the aim of this work was to develop a method for functionalizing the surface of PLA films with a biopolymer, chitosan (CH), which was proved to be a material with intrinsic cell adhesive properties, but whose mechanical properties are insufficient to be used alone. The combination of the two polymers, PLA as a bulk scaffold and CH as a coating, could be a promising combination to develop a scaffold for cell growth. The modification of PLA films involved several steps: aminolysis followed by bromination to graft amino and then bromide groups, poly(glycidyl methacrylate) (PGMA) grafting by surface-initiated supplemental activator and reducing agent atom transfer radical polymerization (SI-SARA ATRP) and finally the CH grafting. To prove the effective adhesive properties, conjugated and non-conjugated films were tested in vitro as substrates for neuronal cell growth using differentiated neurons from human induced pluripotent stem cells. The results demonstrated enhanced cell growth in the presence of CH.


Assuntos
Proliferação de Células , Quitosana , Neurônios , Poliésteres , Alicerces Teciduais , Quitosana/química , Poliésteres/química , Humanos , Alicerces Teciduais/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Polimerização , Adesão Celular/efeitos dos fármacos , Materiais Biocompatíveis/química
2.
Front Bioeng Biotechnol ; 12: 1368851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638322

RESUMO

Breast cancer is a significant global health concern, with the overexpression of human epidermal growth factor receptor 2 (HER2/ERBB2) being a driver oncogene in 20%-30% of cases. Indeed, HER2/ERBB2 plays a crucial role in regulating cell growth, differentiation, and survival via a complex signaling network. Overexpression of HER2/ERBB2 is associated with more aggressive behavior and increased risk of brain metastases, which remains a significant clinical challenge for treatment. Recent research has highlighted the role of breast cancer secretomes in promoting tumor progression, including excessive proliferation, immune invasion, and resistance to anti-cancer therapy, and their potential as cancer biomarkers. In this study, we investigated the impact of ERBB2+ breast cancer SKBR-3 cell line compared with MCF10-A mammary non-tumorigenic cell conditioned medium on the electrophysiological activity and morphology of neural networks derived from neurons differentiated from human induced pluripotent stem cells. Our findings provide evidence of active modulation of neuronal-glial networks by SKBR-3 and MCF10-A conditioned medium. These results provide insights into the complex interactions between breast cancer cells and the surrounding microenvironment. Further research is necessary to identify the specific factors within breast cancer conditioned medium that mediate these effects and to develop targeted therapies that disrupt this interaction.

3.
Gels ; 9(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367152

RESUMO

In vitro three-dimensional models aim to reduce and replace animal testing and establish new tools for oncology research and the development and testing of new anticancer therapies. Among the various techniques to produce more complex and realistic cancer models is bioprinting, which allows the realization of spatially controlled hydrogel-based scaffolds, easily incorporating different types of cells in order to recreate the crosstalk between cancer and stromal components. Bioprinting exhibits other advantages, such as the production of large constructs, the repeatability and high resolution of the process, as well as the possibility of vascularization of the models through different approaches. Moreover, bioprinting allows the incorporation of multiple biomaterials and the creation of gradient structures to mimic the heterogeneity of the tumor microenvironment. The aim of this review is to report the main strategies and biomaterials used in cancer bioprinting. Moreover, the review discusses several bioprinted models of the most diffused and/or malignant tumors, highlighting the importance of this technique in establishing reliable biomimetic tissues aimed at improving disease biology understanding and high-throughput drug screening.

4.
Bioengineering (Basel) ; 10(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106636

RESUMO

With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.

5.
Anal Chem ; 94(46): 16122-16131, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346353

RESUMO

A simple procedure to incorporate enzymes (horseradish peroxidase, HRP, and lactate oxidase, LOx) within alginate hydrogels is reported with electrochemiluminescence (ECL) used to detect the enzymatic reactions with the corresponding substrates. First, HRP and LOx were successfully immobilized into CaCO3 microspheres, followed by the electrostatic layer-by-layer deposition of a nanoshell onto the microspheres, and finally by their dispersion into alginate solution. The as-prepared dispersion was drop cast onto the glassy carbon electrodes and cross-linked by the external and internal gelation methods using Ca2+ cations. The enzymes encapsulated within the alginate hydrogels were characterized using cyclic voltammetry and kinetic studies performed using ECL. The results showed that the enzymatic activity was significantly maintained as a result of the immobilization, with values of the apparent Michaelis-Menten constants estimated as 7.71 ± 0.62 and 8.41 ± 0.43 µM, for HRP and LOx, respectively. The proposed biosensors showed good stability and repeatability with an estimated limit of detection of 5.38 ± 0.05 and 0.50 ± 0.03 µM for hydrogen peroxide and lactic acid, respectively. The as-prepared enzymes encapsulated within the alginate hydrogels showed good stability up to 28 days from their preparation. The sensitivity and selectivity of the enzymes encapsulated within the alginate hydrogels were tested in real matrices (HRP, hydrogen peroxide, in contact lens solution; LOx, lactic acid in artificial sweat) showing the sensitivity of the ECL detection methods for the detection of hydrogen peroxide and lactic acid in real samples.


Assuntos
Alginatos , Técnicas Biossensoriais , Alginatos/química , Enzimas Imobilizadas/química , Peróxido de Hidrogênio/química , Hidrogéis , Cinética , Peroxidase do Rábano Silvestre/química , Técnicas Biossensoriais/métodos , Eletrodos , Ácido Láctico
6.
Carbohydr Polym ; 297: 120049, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184185

RESUMO

Most in vitro functional and morphological studies for developing nervous system have been performed using traditional monolayer cultures onto supports modified by extracellular matrix components or synthetic biopolymers. These biomolecules act as adhesion factors essential for neuronal growth and differentiation. In this study, the use of chitosan as adhesion factor was investigated. Primary rat neurons and neurons differentiated from human induced pluripotent stem cells were cultured onto chitosan and standard adhesion factors modified supports. The initiation, elongation and branching of neuritic processes, synaptogenesis and electrophysiological behavior were studied. The biopolymers affected neurites outgrowth in a time dependent manner; in particular, chitosan promoted neuronal polarity in both cell cultures. These results indicate chitosan as a valid adhesion factor alternative to the standard ones, with the advantage that it can be used both in 2D and 3D cultures, acting as a bridge between these in vitro models.


Assuntos
Quitosana , Células-Tronco Pluripotentes Induzidas , Animais , Células Cultivadas , Quitosana/metabolismo , Quitosana/farmacologia , Humanos , Neuritos/metabolismo , Neurônios/metabolismo , Ratos
7.
Carbohydr Polym ; 271: 118420, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364561

RESUMO

In this work, novel composite microparticles based on chitosan (CHI) and graphite nanoplatelets (GNP) were developed as 3D scaffolds for neuronal cells. The aim is to improve the scaffold strength while maintaining its ability to sustain cell adhesion and differentiation. An air-assisted jetting technique followed by physical crosslinking is employed to obtain CHI/GNP microparticles. Optical and Field Emission Scanning Electron Microscopy micrographs showed a uniform distribution of GNP within the CHI porous matrix. The presence of GNP turned out to improve the strength of the microparticles while conferring good electrical conductivity and ameliorating their stability in aqueous environment. The morphological and immunocytochemical characterization, combined with a preliminary electrophysiological analysis, evidenced the effectiveness of the developed composite microparticles as a scaffold for neuron growth. These scaffolds could be employed for the development of advanced 3D neuronal in vitro models for networks dynamics analysis and drug screening.


Assuntos
Quitosana/química , Grafite/química , Hidrogéis/química , Nanoestruturas/química , Neurônios/efeitos dos fármacos , Alicerces Teciduais/química , Módulo de Elasticidade , Condutividade Elétrica , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Engenharia Tecidual/métodos
8.
Bioeng Transl Med ; 5(3): e10180, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005742

RESUMO

Converting biopolymers to extracellular matrix (ECM)-mimetic hydrogel-based scaffolds has provided invaluable opportunities to design in vitro models of tissues/diseases and develop regenerative therapies for damaged tissues. Among biopolymers, gelatin and its crosslinkable derivatives, such as gelatin methacryloyl (GelMA), have gained significant importance for biomedical applications due to their ECM-mimetic properties. Recently, we have developed the first class of in situ forming GelMA microporous hydrogels based on the chemical annealing of physically crosslinked GelMA microscale beads (microgels), which addressed several key shortcomings of bulk (nanoporous) GelMA scaffolds, including lack of interconnected micron-sized pores to support on-demand three-dimensional-cell seeding and cell-cell interactions. Here, we address one of the limitations of in situ forming microporous GelMA hydrogels, that is, the thermal instability (melting) of their physically crosslinked building blocks at physiological temperature, resulting in compromised microporosity. To overcome this challenge, we developed a two-step fabrication strategy in which thermostable GelMA microbeads were produced via semi-photocrosslinking, followed by photo-annealing to form stable microporous scaffolds. We show that the semi-photocrosslinking step (exposure time up to 90 s at an intensity of ~100 mW/cm2 and a wavelength of ~365 nm) increases the thermostability of GelMA microgels while decreasing their scaffold forming (annealing) capability. Hinging on the tradeoff between microgel and scaffold stabilities, we identify the optimal crosslinking condition (exposure time ~60 s) that enables the formation of stable annealed microgel scaffolds. This work is a step forward in engineering in situ forming microporous hydrogels made up from thermostable GelMA microgels for in vitro and in vivo applications at physiological temperature well above the gelatin melting point.

9.
Colloids Surf B Biointerfaces ; 196: 111295, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32768984

RESUMO

This manuscript reports the development of functional 3D scaffolds based on chitosan (CHI) and graphite oxide nanoplatelets (GO) for neuronal network growth. To this aim, CHI microparticles, produced by alkaline gelation method, were coated with GO exploiting a simple template-assisted assembly based on the electrostatic attraction in an aqueous medium. The optimal deposition conditions were evaluated by optical microscopy and studied by quartz crystal microbalance. FE-SEM observations highlight the formation of a core-shell structure where the porous chitosan core is completely wrapped by a uniform GO layer. This outer shell protects the inner chitosan from enzymatic degradation thus potentially extending the scaffold viability for in vivo applications. The presence of hydrophilic oxygen-containing functionalities on the outermost layer of GO and its inner conductive graphitic core maintained the bioactivity of the scaffold and promoted neuronal cell adhesion and growth. The proposed approach to modify the surface of CHI microparticles makes it possible for the design of 3D scaffolds for advanced neuronal tissue engineering applications.


Assuntos
Quitosana , Grafite , Óxidos , Engenharia Tecidual , Alicerces Teciduais
10.
Int J Biol Macromol ; 156: 454-461, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302635

RESUMO

The process of Ca2+ mediated gelation of alginate and the fabrication of nanoengineered polyelectrolyte capsules were combined for the preparation of alginate microbeads characterized by the presence of well-defined drug loaded microvoids in their volume. The obtained engineered alginate microbeads are described in terms of their morphology, loading efficiency and release characteristics. It was found that the generation of microvoids in the volume of alginate microbeads could be a promising approach for the creation of microstructured and biocompatible hydrogels, prospectively having highly tunable properties in terms of loading and releasing characteristics. In particular, it was found that the developed system was able to limit drug leakage during the gelation process and to control the initial burst release of small hydrophilic drug molecules, such as doxorubicin hydrochloride. Finally, the cytocompatibility of the developed microhydrogels was assessed on MCF-7 human breast cancer cells as well as their ability to sustain the release of the model drug during time.


Assuntos
Alginatos/química , Preparações de Ação Retardada , Portadores de Fármacos , Microesferas , Cápsulas , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Peso Molecular
11.
Biomaterials ; 156: 159-171, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197747

RESUMO

The availability of 3D biomimetic in vitro neuronal networks of mammalian neurons represents a pivotal step for the development of brain-on-a-chip experimental models to study neuronal (dys)functions and particularly neuronal connectivity. The use of hydrogel-based scaffolds for 3D cell cultures has been extensively studied in the last years. However, limited work on biomimetic 3D neuronal cultures has been carried out to date. In this respect, here we investigated the use of a widely popular polysaccharide, chitosan (CHI), for the fabrication of a microbead based 3D scaffold to be coupled to primary neuronal cells. CHI microbeads were characterized by optical and atomic force microscopies. The cell/scaffold interaction was deeply characterized by transmission electron microscopy and by immunocytochemistry using confocal microscopy. Finally, a preliminary electrophysiological characterization by micro-electrode arrays was carried out.


Assuntos
Quitosana/farmacologia , Microesferas , Rede Nervosa/fisiologia , Neurônios/fisiologia , Alicerces Teciduais/química , Animais , Rede Nervosa/ultraestrutura , Neurônios/ultraestrutura , Imagem Óptica , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA