Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Antioxidants (Basel) ; 13(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671937

RESUMO

To date, little is known concerning the circulating levels of biochemically relevant metabolites (antioxidants, oxidative/nitrosative stress biomarkers, purines, and pyrimidines) in patients with primary myelofibrosis (PMF), a rare form of myeloproliferative tumor causing a dramatic decrease in erythropoiesis and angiogenesis. In this study, using a targeted metabolomic approach, serum samples of 22 PMF patients and of 22 control healthy donors were analyzed to quantify the circulating concentrations of hypoxanthine, xanthine, uric acid (as representative purines), uracil, ß-pseudouridine, uridine (as representative pyrimidines), reduced glutathione (GSH), ascorbic acid (as two of the main water-soluble antioxidants), malondialdehyde, nitrite, nitrate (as oxidative/nitrosative stress biomarkers) and creatinine, using well-established HPLC method for their determination. Results showed that PMF patients have dramatic depletions of both ascorbic acid and GSH (37.3- and 3.81-times lower circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001), accompanied by significant increases in malondialdehyde (MDA) and nitrite + nitrate (4.73- and 1.66-times higher circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001). Additionally, PMF patients have remarkable alterations of circulating purines, pyrimidines, and creatinine, suggesting potential mitochondrial dysfunctions causing energy metabolism imbalance and consequent increases in these cell energy-related compounds. Overall, these results, besides evidencing previously unknown serum metabolic alterations in PMF patients, suggest that the determination of serum levels of the aforementioned compounds may be useful to evaluate PMF patients on hospital admission for adjunctive therapies aimed at recovering their correct antioxidant status, as well as to monitor patients' status and potential pharmacological treatments.

2.
Front Neurosci ; 17: 1228927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719162

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in gene regulation. Recently, miRNA dysregulation has been found in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The diagnosis of Alzheimer's and Parkinson's is currently challenging, mainly occurring when pathology is already present, and although treatments are available for both diseases, the role of treatment is primarily to prevent or delay the progress of the diseases instead of fully overcoming the diseases. Therefore, the challenge in the near future will be to determine effective drugs to tackle the dysregulated biological pathways in neurodegenerative diseases. In the present study, we describe the dysregulation of miRNAs in blood of Alzheimer's and Parkinson's patients with the aim to identify common mechanisms between the 2 pathologies and potentially to identify common therapeutic targets which can stop or delay the progression of two most frequent neuropathologies. Two independent systematic reviews, bioinformatic analysis, and experiment validation were performed to identify whether AD and PD share common pathways. A total of 15 common miRNAs were found in the literature and 13 common KEGG pathways. Among the common miRNAs, two were selected for validation in a small cohort of AD and PD patients. Let-7f-5p and miR-29b-3p showed to be good predictors in blood of PD patients.

3.
Brain Commun ; 5(4): fcad215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649639

RESUMO

Mild traumatic brain injury is a complex neurological disorder of significant concern among athletes who play contact sports. Athletes who sustain sport-related concussion typically undergo physical examination and neurocognitive evaluation to determine injury severity and return-to-play status. However, traumatic disruption to neurometabolic processes can occur with minimal detectable anatomic pathology or neurocognitive alteration, increasing the risk that athletes may be cleared for return-to-play during a vulnerable period and receive a repetitive injury. This underscores the need for sensitive functional neuroimaging methods to detect altered cerebral physiology in concussed athletes. The present study compared the efficacy of Immediate Post-concussion Assessment and Cognitive Testing composite scores and whole-brain measures of blood oxygen level-dependent signal variability for classifying concussion status and predicting concussion symptomatology in healthy, concussed and repetitively concussed athletes, assessing blood oxygen level-dependent signal variability as a potential diagnostic tool for characterizing functional alterations to cerebral physiology and assisting in the detection of sport-related concussion. We observed significant differences in regional blood oxygen level-dependent signal variability measures for concussed athletes but did not observe significant differences in Immediate Post-concussion Assessment and Cognitive Testing scores of concussed athletes. We further demonstrate that incorporating measures of functional brain alteration alongside Immediate Post-concussion Assessment and Cognitive Testing scores enhances the sensitivity and specificity of supervised random forest machine learning methods when classifying and predicting concussion status and post-concussion symptoms, suggesting that alterations to cerebrovascular status characterize unique variance that may aid in the detection of sport-related concussion and repetitive mild traumatic brain injury. These results indicate that altered blood oxygen level-dependent variability holds promise as a novel neurobiological marker for detecting alterations in cerebral perfusion and neuronal functioning in sport-related concussion, motivating future research to establish and validate clinical assessment protocols that can incorporate advanced neuroimaging methods to characterize altered cerebral physiology following mild traumatic brain injury.

4.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445884

RESUMO

In a previous study, we showed that various low-molecular-weight compounds in follicular fluid (FF) samples of control fertile females (CFF) have different concentrations compared to those found in FF of infertile females (IF), before and after their categorization into different subgroups, according to their clinical diagnosis of infertility. Using the same FF samples of this previous study, we here analyzed the FF concentrations of free and bound bilirubin and compared the results obtained in CFF, IF and the different subgroups of IF (endometriosis, EM, polycystic ovary syndrome, PCOS, age-related reduced ovarian reserve, AR-ROR, reduced ovarian reserve, ROR, genetic infertility, GI and unexplained infertility, UI). The results clearly indicated that CFF had lower values of free, bound and total bilirubin compared to the respective values measured in pooled IF. These differences were observed even when IF were categorized into EM, PCOS, AR-ROR, ROR, GI and UI, with EM and PCOS showing the highest values of free, bound and total bilirubin among the six subgroups. Using previous results of ascorbic acid, GSH and nitrite + nitrate measured in the same FF samples of the same FF donors, we found that total bilirubin in FF increased as a function of decreased values of ascorbic acid and GSH, and increased concentrations of nitrite + nitrate. The values of total bilirubin negatively correlated with the clinical parameters of fertilization procedures (number of retrieved oocytes, mature oocytes, fertilized oocytes, blastocysts, high-quality blastocysts) and with clinical pregnancies and birth rates. Bilirubin concentrations in FF were not linked to those found in serum samples of FF donors, thereby strongly suggesting that its over production was due to higher activity of heme oxygenase-1 (HO-1), the key enzyme responsible for bilirubin formation, in granulosa cells, or cumulus cells or oocytes of IF and ultimately leading to bilirubin accumulation in FF. Since increased activity of HO-1 is one of the main enzymatic intracellular mechanisms of defense towards external insults (oxidative/nitrosative stress, inflammation), and since we found correlations among bilirubin and oxidative/nitrosative stress in these FF samples, it may reasonably be supposed that bilirubin increase in FF of IF is the result of protracted exposures to the aforementioned insults evidently playing relevant roles in female infertility.


Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Gravidez , Humanos , Feminino , Infertilidade Feminina/metabolismo , Líquido Folicular/metabolismo , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Síndrome do Ovário Policístico/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Fertilização in vitro , Oócitos/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Bilirrubina/metabolismo , Ácido Ascórbico/metabolismo
5.
Antioxidants (Basel) ; 12(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37237851

RESUMO

To date, there is no information on the effect of TBI on the changes in brain CoQ levels and possible variations in its redox state. In this study, we induced graded TBIs (mild TBI, mTBI and severe TBI, sTBI) in male rats, using the weight-drop closed-head impact acceleration model of trauma. At 7 days post-injury, CoQ9, CoQ10 and α-tocopherol were measured by HPLC in brain extracts of the injured rats, as well as in those of a group of control sham-operated rats. In the controls, about the 69% of total CoQ was in the form of CoQ9 and the oxidized/reduced ratios of CoQ9 and CoQ10 were, respectively, 1.05 ± 0.07 and 1.42 ± 0.17. No significant changes in these values were observed in rats experiencing mTBI. Conversely, in the brains of sTBI-injured animals, an increase in reduced and a decrease in oxidized CoQ9 produced an oxidized/reduced ratio of 0.81 ± 0.1 (p < 0.001 compared with both controls and mTBI). A concomitant decrease in both reduced and oxidized CoQ10 generated a corresponding oxidized/reduced ratio of 1.38 ± 0.23 (p < 0.001 compared with both controls and mTBI). An overall decrease in the concentration of the total CoQ pool was also found in sTBI-injured rats (p < 0.001 compared with both controls and mTBI). Concerning α-tocopherol, whilst no differences compared with the controls were found in mTBI animals, a significant decrease was observed in rats experiencing sTBI (p < 0.01 compared with both controls and mTBI). Besides suggesting potentially different functions and intracellular distributions of CoQ9 and CoQ10 in rat brain mitochondria, these results demonstrate, for the first time to the best of knowledge, that sTBI alters the levels and redox states of CoQ9 and CoQ10, thus adding a new explanation to the mitochondrial impairment affecting ETC, OXPHOS, energy supply and antioxidant defenses following sTBI.

6.
Front Neurol ; 14: 1285937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318235

RESUMO

Introduction: Concussion is a growing concern in worldwide sporting culture. Heart rate variability (HRV) is closely tied with autonomic nervous system (ANS) deficits that arise from a concussion. The objective of this review was to determine if a history of concussion (HOC) can impact HRV values in the time-domain in individuals at rest. This review works to add to the literature surrounding HRV testing and if it can be used to check for brain vulnerabilities beyond the recovery of concussion symptoms. Materials and methods: The systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method. A computer based systematic review scanned articles dating from 1996 to June 2023 through PubMed, Cochrane Library, Google Scholar, and EMBASE databases. A risk of bias assessment was conducted using the ROBINS-E tool. The average difference in time between heartbeats (MeanNN), the standard deviation of the differences (SDNN), and the root mean squared of the successive intervals (RMSSD) were measured. Results: Six total studies were found that fit the inclusion criteria including a total of 242 participants (133 without HOC, 109 with HOC). The average age of the control group was 23.3 ± 8.2, while the average age of the history of TBI group was 25.4 ± 9.7, with no significant difference between the groups (p = 0.202). Four of the studies reported no significant difference in any of the three measures, while two of the studies reported significant difference for all three measures. The meta-analysis was conducted and found that MeanNN (p = 0.03) and RMSSD (p = 0.04) reached statistical significance, while SDNN did not (p = 0.11). Conclusion: The results of this meta-analysis showed significant difference in two of the three HRV time-domain parameters evaluated. It demonstrates that there can be lowered HRV values that expand beyond the recovery of symptoms, reflecting an extensive period of ANS susceptibility after a concussion. This may be an important variable in determining an athlete's return to play (RTP). Lack of homogenous study populations and testing methods introduces potential for bias and confounding factors, such as gender or age. Future studies should focus on baseline tests to compare individuals to themselves rather than matched controls.

7.
Trauma Surg Acute Care Open ; 7(1): e000929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274785

RESUMO

Concussion has been receiving an increasing amount of media exposure following several high-profile professional sports controversies and multimillion-dollar lawsuits. The potential life-changing sequalae of concussion and the rare, but devasting, second impact syndrome have also gained much attention. Despite this, our knowledge of the pathological processes involved is limited and often extrapolated from research into more severe brain injuries. As there is no objective diagnostic test for concussion. Relying on history and examination only, the diagnosis of concussion has become the rate-limiting step in widening research into the disease. Clinical study protocols therefore frequently exclude the most vulnerable groups of patients such as those with existing cognitive impairment, concurrent intoxication, mental health issues or learning difficulties. This up-to-date narrative review aims to summarize our current concussion knowledge and provides an insight into promising avenues for future research.

8.
Front Pharmacol ; 13: 983853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110516

RESUMO

Background: Acute and chronic neurodegenerative diseases represent an immense socioeconomic burden that drives the need for new disease modifying drugs. Common pathogenic mechanisms in these diseases are evident, suggesting that a platform neuroprotective therapy may offer effective treatments. Here we present evidence for the mode of pharmacological action of a novel neuroprotective low molecular weight dextran sulphate drug called ILB®. The working hypothesis was that ILB® acts via the activation of heparin-binding growth factors (HBGF). Methods: Pre-clinical and clinical (healthy people and patients with ALS) in vitro and in vivo studies evaluated the mode of action of ILB®. In vitro binding studies, functional assays and gene expression analyses were followed by the assessment of the drug effects in an animal model of severe traumatic brain injury (sTBI) using gene expression studies followed by functional analysis. Clinical data, to assess the hypothesized mode of action, are also presented from early phase clinical trials. Results: ILB® lengthened APTT time, acted as a competitive inhibitor for HGF-Glypican-3 binding, effected pulse release of heparin-binding growth factors (HBGF) into the circulation and modulated growth factor signaling pathways. Gene expression analysis demonstrated substantial similarities in the functional dysregulation induced by sTBI and various human neurodegenerative conditions and supported a cascading effect of ILB® on growth factor activation, followed by gene expression changes with profound beneficial effect on molecular and cellular functions affected by these diseases. The transcriptional signature of ILB® relevant to cell survival, inflammation, glutamate signaling, metabolism and synaptogenesis, are consistent with the activation of neuroprotective growth factors as was the ability of ILB® to elevate circulating levels of HGF in animal models and humans. Conclusion: ILB® releases, redistributes and modulates the bioactivity of HBGF that target disease compromised nervous tissues to initiate a cascade of transcriptional, metabolic and immunological effects that control glutamate toxicity, normalize tissue bioenergetics, and resolve inflammation to improve tissue function. This unique mechanism of action mobilizes and modulates naturally occurring tissue repair mechanisms to restore cellular homeostasis and function. The identified pharmacological impact of ILB® supports the potential to treat various acute and chronic neurodegenerative disease, including sTBI and ALS.

9.
BMJ Open ; 12(9): e062030, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130754

RESUMO

INTRODUCTION: Concussion is a complex pathophysiological process with a wide range of non-specific signs and symptoms. There are currently no objective diagnostic tests to identify concussion, and diagnosis relies solely on history and examination. Recent research has identified a unique panel of microRNAs (miRNAs) that distinguish between concussed and non-concussed rugby players. This study aims to assess the diagnostic utility of salivary miRNAs in concussion for a sample of UK National Health Service patients and whether well-established sports-related concussion (SRC) assessment tools may be translated into the emergency department (ED). METHODS AND ANALYSIS: Concussion in Non-athletes: Assessment of Cognition and Symptomatology is a single-centre, prospective, two-phase cohort study. The concussed cohort will consist of participants with maxillofacial trauma and concurrent concussion. The control cohort will consist of participants with isolated limb trauma and no evidence of concussion. Participants will be recruited in the ED and saliva samples will be taken to identify the presence of miRNAs. The SRC assessments being investigated include the Sports Concussion Assessment Test, Fifth Edition (SCAT5), the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) and the ImPACT Quick. Follow-up will be at 24-48 hours in-hospital and remotely via telephone and email at 14 days and 6 months. ETHICS AND DISSEMINATION: Ethical approval was granted in February 2021 by the West Midlands Coventry & Warwickshire Research Ethics Committee (ref 20/WM/0299). The investigators intend to submit their study findings for publication in peer-reviewed journals and to disseminate study findings via presentation at academic meetings. The results will also form part of a doctorate thesis, registered at the University of Birmingham.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , MicroRNAs , Traumatismos em Atletas/diagnóstico , Traumatismos em Atletas/psicologia , Concussão Encefálica/diagnóstico , Concussão Encefálica/psicologia , Cognição , Estudos de Coortes , Humanos , Testes Neuropsicológicos , Estudos Prospectivos , Medicina Estatal
10.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955592

RESUMO

In a previous study, we found that administration of ILB®, a new low molecular weight dextran sulphate, significantly improved mitochondrial functions and energy metabolism, as well as decreased oxidative/nitrosative stress, of brain tissue of rats exposed to severe traumatic brain injury (sTBI), induced by the closed-head weight-drop model of diffused TBI. Using aliquots of deproteinized brain tissue of the same animals of this former study, we here determined the concentrations of 24 amino acids of control rats, untreated sTBI rats (sacrificed at 2 and 7 days post-injury) and sTBI rats receiving a subcutaneous ILB® administration (at the dose levels of 1, 5 and 15 mg/kg b.w.) 30 min post-impact (sacrificed at 2 and 7 days post-injury). Additionally, in a different set of experiments, new groups of control rats, untreated sTBI rats and ILB®-treated rats (administered 30 min after sTBI at the dose levels of 1 or 5 mg/kg b.w.) were studied for their neurocognitive functions (anxiety, locomotor capacities, short- and long-term memory) at 7 days after the induction of sTBI. Compared to untreated sTBI animals, ILB® significantly decreased whole brain glutamate (normalizing the glutamate/glutamine ratio), glycine, serine and γ-aminobutyric acid. Furthermore, ILB® administration restored arginine metabolism (preventing nitrosative stress), levels of amino acids involved in methylation reactions (methionine, L-cystathionine, S-adenosylhomocysteine), and N-acetylaspartate homeostasis. The macroscopic evidences of the beneficial effects on brain metabolism induced by ILB® were the relevant improvement in neurocognitive functions of the group of animals treated with ILB® 5 mg/kg b.w., compared to the marked cognitive decline measured in untreated sTBI animals. These results demonstrate that ILB® administration 30 min after sTBI prevents glutamate excitotoxicity and normalizes levels of amino acids involved in crucial brain metabolic functions. The ameliorations of amino acid metabolism, mitochondrial functions and energy metabolism in ILB®-treated rats exposed to sTBI produced significant improvement in neurocognitive functions, reinforcing the concept that ILB® is a new effective therapeutic tool for the treatment of sTBI, worth being tested in the clinical setting.


Assuntos
Lesões Encefálicas Traumáticas , Sulfatos , Aminoácidos/metabolismo , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Sulfato de Dextrana , Ácido Glutâmico , Homeostase , Peso Molecular , Ratos
11.
PLoS One ; 17(5): e0267183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613082

RESUMO

INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is an invariably lethal progressive disease, causing degeneration of neurons and muscle. No current treatment halts or reverses disease advance. This single arm, open label, clinical trial in patients with ALS investigated the safety and tolerability of a novel modified low molecular weight dextran sulphate (LMW-DS, named ILB®) previously proven safe for use in healthy volunteers and shown to exert potent neurotrophic effects in pre-clinical studies. Secondary endpoints relate to efficacy and exploratory biomarkers. METHODS: Thirteen patients with ALS were treated with 5 weekly subcutaneous injections of ILB®. Safety and efficacy outcome measures were recorded weekly during treatment and at regular intervals for a further 70 days. Functional and laboratory biomarkers were assessed before, during and after treatment. RESULTS: No deaths, serious adverse events or participant withdrawals occurred during or after ILB® treatment and no significant drug-related changes in blood safety markers were evident, demonstrating safety and tolerability of the drug in this cohort of patients with ALS. The PK of ILB® in patients with ALS was similar to that seen in healthy controls. The ILB® injection elicited a transient elevation of plasma Hepatocyte Growth Factor, a neurotrophic and myogenic growth factor. Following the ILB® injections patients reported increased vitality, decreased spasticity and increased mobility. The ALSFRS-R rating improved from 36.31 ± 6.66 to 38.77 ± 6.44 and the Norris rating also improved from 70.61 ± 13.91 to 77.85 ± 14.24 by Day 36. The improvement of functions was associated with a decrease in muscle atrophy biomarkers. These therapeutic benefits decreased 3-4 weeks after the last dosage. CONCLUSIONS: This pilot clinical study demonstrates safety and tolerability of ILB® in patients with ALS. The exploratory biomarker and functional measures must be cautiously interpreted but suggest clinical benefit and have a bearing on the mechanism of action of ILB®. The results support the drug's potential as the first disease modifying treatment for patients with ALS. TRIAL REGISTRATION: EudraCT 2017-005065-47.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Estudos de Coortes , Humanos , Avaliação de Resultados em Cuidados de Saúde
12.
PLoS One ; 17(3): e0264533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239693

RESUMO

Apoptotic cell death within the brain represents a significant contributing factor to impaired post-traumatic tissue function and poor clinical outcome after traumatic brain injury. After irradiation with light in the wavelength range of 600-1200 nm (photobiomodulation), previous investigations have reported a reduction in apoptosis in various tissues. This study investigates the effect of 660 nm photobiomodulation on organotypic slice cultured hippocampal tissue of rats, examining the effect on apoptotic cell loss. Tissue optical Raman spectroscopic changes were evaluated. A significantly higher proportion of apoptotic cells 62.8±12.2% vs 48.6±13.7% (P<0.0001) per region were observed in the control group compared with the photobiomodulation group. After photobiomodulation, Raman spectroscopic observations demonstrated 1440/1660 cm-1 spectral shift. Photobiomodulation has the potential for therapeutic utility, reducing cell loss to apoptosis in injured neurological tissue, as demonstrated in this in vitro model. A clear Raman spectroscopic signal was observed after apparent optimal irradiation, potentially integrable into therapeutic light delivery apparatus for real-time dose metering.


Assuntos
Lesões Encefálicas Traumáticas , Terapia com Luz de Baixa Intensidade , Animais , Apoptose , Encéfalo , Lesões Encefálicas Traumáticas/metabolismo , Hipocampo/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Ratos , Análise Espectral Raman
13.
Cells ; 11(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011725

RESUMO

Alzheimer's disease (AD) is the most common form of dementia globally; however, the aetiology of AD remains elusive hindering the development of effective therapeutics. MicroRNAs (miRNAs) are regulators of gene expression and have been of growing interest in recent studies in many pathologies including AD not only for their use as biomarkers but also for their implications in the therapeutic field. In this study, miRNA and protein profiles were obtained from brain tissues of different stage (Braak III-IV and Braak V-VI) of AD patients and compared to matched controls. The aim of the study was to identify in the late stage of AD, the key dysregulated pathways that may contribute to pathogenesis and then to evaluate whether any of these pathways could be detected in the early phase of AD, opening new opportunity for early treatment that could stop or delay the pathology. Six common pathways were found regulated by miRNAs and proteins in the late stage of AD, with one of them (Rap1 signalling) activated since the early phase. MiRNAs and proteins were also compared to explore an inverse trend of expression which could lead to the identification of new therapeutic targets. These results suggest that specific miRNA changes could represent molecular fingerprint of neurodegenerative processes and potential therapeutic targets for early intervention.


Assuntos
Doença de Alzheimer/genética , Encéfalo/patologia , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Feminino , Humanos , Masculino
14.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943987

RESUMO

MicroRNAs (miRNAs) are small non-coding nucleic acids that can regulate post-transcriptional gene expression by binding to complementary sequences of target mRNA. Evidence showed that dysregulated miRNA expression may be associated with neurological conditions such as Alzheimer's disease (AD). In this study, we combined the results of two independent systematic reviews aiming to unveil the co-expression network of miRNAs and proteins in brain tissues of AD patients. Twenty-eight studies including a total of 113 differentially expressed miRNAs (53 of them validated by qRT-PCR), and 26 studies including a total of 196 proteins differentially expressed in AD brains compared to healthy age matched controls were selected. Pathways analyses were performed on the results of the two reviews and 39 common pathways were identified. A further bioinformatic analysis was performed to match miRNA and protein targets with an inverse relation. This revealed 249 inverse relationships in 28 common pathways, representing new potential targets for therapeutic intervention. A meta-analysis, whenever possible, revealed miR-132-3p and miR-16 as consistently downregulated in late-stage AD across the literature. While no inverse relationships between miR-132-3p and proteins were found, miR-16's inverse relationship with CLOCK proteins in the circadian rhythm pathway is discussed and therapeutic targets are proposed. The most significant miRNA dysregulated pathway highlighted in this review was the hippo signaling pathway with p = 1.66 × 10-9. Our study has revealed new mechanisms for AD pathogenesis and this is discussed along with opportunities to develop novel miRNA-based drugs to target these pathways.


Assuntos
Doença de Alzheimer/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Proteínas/genética , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Humanos , RNA Mensageiro/genética
15.
Cells ; 10(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572074

RESUMO

Traumatic brain injury (TBI) represents one of the leading causes of mortality and morbidity worldwide, placing an enormous socioeconomic burden on healthcare services and communities around the world. Survivors of TBI can experience complications ranging from temporary neurological and psychosocial problems to long-term, severe disability and neurodegenerative disease. The current lack of therapeutic agents able to mitigate the effects of secondary brain injury highlights the urgent need for novel target discovery. This study comprises two independent systematic reviews, investigating both microRNA (miRNA) and proteomic expression in rat models of severe TBI (sTBI). The results were combined to perform integrated miRNA-protein co-expression analyses with the aim of uncovering the potential roles of miRNAs in sTBI and to ultimately identify new targets for therapy. Thirty-four studies were included in total. Bioinformatic analysis was performed to identify any miRNA-protein associations. Endocytosis and TNF signalling pathways were highlighted as common pathways involving both miRNAs and proteins found to be differentially expressed in rat brain tissue following sTBI, suggesting efforts to find novel therapeutic targets that should be focused here. Further high-quality investigations are required to ascertain the involvement of these pathways and their miRNAs in the pathogenesis of TBI and other CNS diseases and to therefore uncover those targets with the greatest therapeutic potential.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Mapas de Interação de Proteínas , Proteoma/metabolismo , Animais , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , MicroRNAs/análise , Proteoma/análise , Ratos
16.
J Pers Med ; 11(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34442438

RESUMO

Oxidative/nitrosative stress and mitochondrial dysfunction is a hallmark of amyotrophic lateral sclerosis (ALS), an invariably fatal progressive neurodegenerative disease. Here, as an exploratory arm of a phase II clinical trial (EudraCT Number 2017-005065-47), we used high performance liquid chromatography(HPLC) to investigate changes in the metabolic profiles of serum from ALS patients treated weekly for 4 weeks with a repeated sub-cutaneous dose of 1 mg/kg of a proprietary low molecular weight dextran sulphate, called ILB®. A significant normalization of the serum levels of several key metabolites was observed over the treatment period, including N-acetylaspartate (NAA), oxypurines, biomarkers of oxidative/nitrosative stress and antioxidants. An improved serum metabolic profile was accompanied by significant amelioration of the patients' clinical conditions, indicating a response to ILB® treatment that appears to be mediated by improvement of tissue bioenergetics, decrease of oxidative/nitrosative stress and attenuation of (neuro)inflammatory processes.

17.
Mech Ageing Dev ; 197: 111516, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34097937

RESUMO

Human behavior is influenced by both genetic and environmental factors. Monoamine oxidase A (MAOA) is among the most investigated genetic determinants of violent behaviors, while the monoamine oxidase B (MAOB) is explored in Parkinson's disease. We collected twenty-four post-mortem brain tissue datasets of 3871 and 1820 non-demented males and females, respectively, who died from causes not attributable to neurodegenerative diseases. The gene expressions of MAOA and MAOB (MAO genes) were analyzed in these subjects, who were further stratified according to age into eleven groups ranging from late Infancy (5-9 months) to centenarians (>100 years). MAO genes were differently expressed in brains during the entire life span. In particular, maximal and minimal expression levels were found in early life and around the teen years. Females tended to have higher MAO gene levels throughout their lives than those found in age-matched males, even when expressions were separately measured in different brain regions. We demonstrated the existence of age- and sex- related variations in the MAO transcript levels in defined brain regions. More in-depth protein studies are needed to confirm our preliminary results obtained only on messenger RNAs in order to establish the role played by MAO genes in human development.


Assuntos
Envelhecimento/metabolismo , Encéfalo/enzimologia , Regulação Enzimológica da Expressão Gênica , Monoaminoxidase/biossíntese , Caracteres Sexuais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade
18.
Br J Sports Med ; 55(24): 1395-1404, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33757972

RESUMO

OBJECTIVE: To investigate the role of salivary small non-coding RNAs (sncRNAs) in the diagnosis of sport-related concussion. METHODS: Saliva was obtained from male professional players in the top two tiers of England's elite rugby union competition across two seasons (2017-2019). Samples were collected preseason from 1028 players, and during standardised head injury assessments (HIAs) at three time points (in-game, post-game, and 36-48 hours post-game) from 156 of these. Samples were also collected from controls (102 uninjured players and 66 players sustaining a musculoskeletal injury). Diagnostic sncRNAs were identified with next generation sequencing and validated using quantitative PCR in 702 samples. A predictive logistic regression model was built on 2017-2018 data (training dataset) and prospectively validated the following season (test dataset). RESULTS: The HIA process confirmed concussion in 106 players (HIA+) and excluded this in 50 (HIA-). 32 sncRNAs were significantly differentially expressed across these two groups, with let-7f-5p showing the highest area under the curve (AUC) at 36-48 hours. Additionally, a combined panel of 14 sncRNAs (let-7a-5p, miR-143-3p, miR-103a-3p, miR-34b-3p, RNU6-7, RNU6-45, Snora57, snoU13.120, tRNA18Arg-CCT, U6-168, U6-428, U6-1249, Uco22cjg1,YRNA_255) could differentiate concussed subjects from all other groups, including players who were HIA- and controls, immediately after the game (AUC 0.91, 95% CI 0.81 to 1) and 36-48 hours later (AUC 0.94, 95% CI 0.86 to 1). When prospectively tested, the panel confirmed high predictive accuracy (AUC 0.96, 95% CI 0.92 to 1 post-game and AUC 0.93, 95% CI 0.86 to 1 at 36-48 hours). CONCLUSIONS: SCRUM, a large prospective observational study of non-invasive concussion biomarkers, has identified unique signatures of concussion in saliva of male athletes diagnosed with concussion.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , MicroRNAs , Rugby , Saliva/química , Atletas , Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Humanos , Masculino
19.
Antioxidants (Basel) ; 9(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235799

RESUMO

Due to a multiplicity of causes provoking traumatic brain injury (TBI), TBI is a highly heterogeneous pathology, characterized by high mortality and disability rates. TBI is an acute neurodegenerative event, potentially and unpredictably evolving into sub-chronic and chronic neurodegenerative events, with transient or permanent neurologic, cognitive, and motor deficits, for which no valid standardized therapies are available. A vast body of literature demonstrates that TBI-induced oxidative/nitrosative stress is involved in the development of both acute and chronic neurodegenerative disorders. Cellular defenses against this phenomenon are largely dependent on low molecular weight antioxidants, most of which are consumed with diet or as nutraceutical supplements. A large number of studies have evaluated the efficacy of antioxidant administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. Points of weakness of preclinical studies are represented by the large variability in the TBI model adopted, in the antioxidant tested, in the timing, dosages, and routes of administration used, and in the variety of molecular and/or neurocognitive parameters evaluated. The analysis of the very few clinical studies does not allow strong conclusions to be drawn on the real effectiveness of antioxidant administration to TBI patients. Standardizing TBI models and different experimental conditions, as well as testing the efficacy of administration of a cocktail of antioxidants rather than only one, should be mandatory. According to some promising clinical results, it appears that sports-related concussion is probably the best type of TBI to test the benefits of antioxidant administration.

20.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059364

RESUMO

Sport-related traumatic brain injury (TBI) elicits a multifaceted inflammatory response leading to brain injury and morbidity. This response could be a predictive tool for the progression of TBI and to stratify the injury of which mild TBI is most prevalent. Therefore, we examined the differential expression of serum inflammatory markers overtime and identified novel markers in repetitively concussed athletes. Neuropsychological assessment by Wechsler Adult Intelligence Scale (WAIS) and Immediate Post Concussion Assessment and Cognitive Test (ImPACT) was performed on rugby players and serum was taken from healthy, concussed and repetitively concussed athletes. Serum was also obtained <1 week and >1 week after trauma and analyzed for 92 inflammatory protein markers. Fibroblast growth factor 21 (FGF21) and interleukin-7 (IL-7) differentiated repetitively concussed athletes. Macrophage chemotactic protein-1 (MCP-1), tumor necrosis factor superfamily member 14 (TNFSF14) were significantly reduced >1 week and chemokine (C-X3-C motif) ligand 1 (CX3CL1) upregulated <1 week after injury. FGF21 and MCP-1 negatively correlated with symptoms and their severity. We have identified dynamic changes in the inflammatory response overtime and in different classes of concussion correlating with disease progression. This data supports the use of inflammatory biomarkers as predictors of symptom development due to secondary complications of sport-related mTBI.


Assuntos
Atletas , Traumatismos em Atletas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Adolescente , Adulto , Traumatismos em Atletas/complicações , Traumatismos em Atletas/fisiopatologia , Biomarcadores , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Quimiocina CCL2/metabolismo , Quimiocina CX3CL1/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Inflamação , Interleucina-7/metabolismo , Masculino , Testes Neuropsicológicos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Reino Unido , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA