Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 188: 114484, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823870

RESUMO

The aim of the present study was to provide a first characterization of lacto-fermented garlic manufactured by local small-scale artisanal producers in the Lower Silesia Region (Poland). The lacto-fermented garlic samples showed high nutritional features in terms of antioxidant activity. A total of 86 compounds, belonging to various chemical classes, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). Most of these compounds belonged to six main classes, being sulfur compounds, esters and acetates, oxygenated monoterpenes, monoterpene hydrocarbons, and alcohols. Aldehydes, acids, ketones, furans, and phenols were also identified. In the analyzed samples, counts up to 8 log cfu g-1 were observed for lactic acid bacteria. Metataxonomic analysis revealed the presence of Levilactobacillus, Lactiplantibacillus, Latilactobacillus, Secundilactobacillus, Weissella, Leuconostoc, Lactococcus, Pediococcus, and Lacticaseibacillus among the major taxa. These results were confirmed by the isolation and characterization of viable lactic acid bacteria. Indeed, the presence of the closest relatives to Lacticaseibacillus casei group, Pediococcus parvulus, Levilactobacillus brevis, Levilactobacillus parabrevis, and Lactiplantibacillus plantarum group was observed. A good acidification performance in salty garlic-based medium was observed for all the isolates that, between 8 and 15 days of fermentation, reached pH values comprised between 4 and 3.5, depending on the tested species. Of note, 15 out of the 37 lactic acid bacteria isolates (Levilactobacillus parabrevis, Pediococcus parvulus, Lactiplantibacillus plantarum group, and Lacticaseibacillus casei group) showed the presence of the hdcA gene of Gram-positive bacteria encoding for histidine decarboxylase. Furthermore, for 8 out of the 37 isolates the in-vitro exopolysaccharides production was observed. No isolate showed inhibitory activity against the three Listeria innocua strains used as surrogate for Listeria monocytogenes.


Assuntos
Fermentação , Microbiologia de Alimentos , Alho , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Alho/química , Antioxidantes/análise , Lactobacillales/metabolismo , Lactobacillales/isolamento & purificação , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise
2.
Foods ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731756

RESUMO

The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% of four different hydrocolloids (sodium alginate, k-carrageenan, xanthan gum, and hydroxypropyl methylcellulose (HPMC)) were used in gluten-free doughs composed of 50% quinoa flour, 20% rice flour, and 30% potato starch. The rheological and fermentative properties of the doughs were evaluated, as well as the chemical composition, specific volume, crust and crumb color, and alveolar structure profile of gluten-free breads. The results highlighted the differences in dough rheology during mixing and fermentation of the doughs. In particular, HPMC showed a good gas retention (93%) during the fermentation of quinoa dough by registering the highest maximum dough development height (Hm). The gluten-free quinoa breads obtained were characterized by significantly different quality parameters (p < 0.05). The use of 3% HPMC resulted in breads with the lowest baking loss, the highest volume, and the most open crumb structure.

3.
Foods ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338595

RESUMO

In this study, the morpho-textural features, total phenolic content (TPC), and antioxidant capacity (AOC) of bread fortified with olive (Olea europaea L.) pomace were evaluated. Fresh olive pomace was subjected to microbiological and chemical (TPC, AOC, and fiber) analyses; then, the same olive pomace was analyzed during 1 to 6 months of storage at 4 °C or -20 °C. All olive pomace samples were used in 10%, 15%, or 20% amounts to produce type 0 soft wheat (Triticum aestivum) and whole wheat bread samples. The volatile organic compounds (VOCs) in the bread samples were also analyzed to assess the effect of the addition of the olive pomace on the flavor profile of the baked products. The TPC and AOC evaluation of olive pomace showed no differences among the analyzed samples (fresh, refrigerated, or frozen). Regarding the bread containing olive pomace, the specific volume was not affected by the amount or the storage methods of the added pomace. Bread samples produced with soft wheat flour showed the lowest hardness values relative to those produced with whole wheat flour, irrespective of the amount or storage method of the olive pomace. Regarding color, the crust and crumb of the bread samples containing 20% olive pomace were significantly darker. The bread samples containing 20% olive pomace had the highest TPC. The bread samples with fresh olive pomace were characterized by terpenoids, ketones, and aldehydes, whereas the bread samples containing refrigerated olive pomace were characterized by alcohols (mainly ethanol), acids, esters, and acetate. Finally, the bread samples with frozen olive pomace showed a volatile profile similar to that of bread produced with fresh olive pomace. Olive pomace was shown to be a suitable ingredient for producing bread with high nutritional value.

4.
Foods ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002154

RESUMO

Ancient grains have gained considerable attention in recent years, as some research suggests they may be healthier than modern wheat. The present study aims to evaluate the chemical, rheological, and microbiological features of three Southern Italian cultivated ancient wheat varieties: Risciola, Carosella, and Saragolla. ATR-FTIR analyses were performed on the finely ground grain samples of the three varieties. The selected grains were ground with a stone mill, and different sifting degrees (whole-100%, type 1-80%, and type 0-72%) were evaluated. The flours showed a good nutritional profile, a higher amylose/amylopectin ratio, and a lower glycemic index than the literature. The gluten index of the samples was in the range 2.6-28.9%, and the flours can be classified as weak, having a value <30%. The farinographic test showed a short development time, low dough stability, a high softening degree, and water absorption, which increased with the degree of sifting. Microbiological analyses performed on flours from ancient grains at different degrees of sifting show their safety, according to their microbiological parameters, which fall within the legal microbiological requirements established by the European Commission Regulation (EC).

5.
Molecules ; 28(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37894688

RESUMO

Sea fennel (Crithmum maritimum L.) is a strongly aromatic herb of the Apiaceae family, whose full exploitation by the modern food industry is of growing interest. This study aimed at investigating the microbiological quality, volatile profile, and sensory traits of sea fennel spices produced using room-temperature drying, oven drying, microwave drying, and freeze drying. All the assayed methods were able to remove moisture up until water activity values below 0.6 were reached; however, except for microwave drying, none of the assayed methods were effective in reducing the loads of contaminating microorganisms. The metataxonomic analysis highlighted the presence of phytopathogens and even human pathogens, including members of the genera Bacillus, Pseudomonas, Alternaria, and Cryptococcus. When compared to fresh leaves, dried leaves showed increased L* (lightness) and c* (chroma, saturation) values and reduced hue angle. Dried leaves were also characterized by decreased levels of terpene hydrocarbons and increased levels of aldehydes, alcohols, and esters. For the sensory test, the microwave-dried samples obtained the highest appreciation by the trained panel. Overall, the collected data indicated microwave drying as the best option for producing sea fennel spices with low microbial loads, brilliant green color, and high-quality sensory traits.


Assuntos
Apiaceae , Foeniculum , Microbiota , Humanos , Antioxidantes , Dessecação
6.
Biomedicines ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37761003

RESUMO

The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable among individuals. We performed a systematic review of published evidence supporting the hypothesis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics, efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota was also reviewed. The PubMed and Scopus databases were searched using specific keywords without limits of species (human or animal) or time from publication. One thousand and fifty five published papers were retrieved in the initial database search. After screening, 50 papers were selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophenolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while all the others showed significant changes in the relative abundance of specific intestinal bacteria. However, no unique pattern of microbiota modification was observed across the different studies. In conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute to the variability in the response to some cIMDs, whereas data are still missing for others.

7.
Foods ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174403

RESUMO

Quinoa and amaranth are of special interest since they are increasingly used for the development of new bakery products with enhanced nutritional value. The aim of the study was to evaluate the agronomic, microbiological, and nutritional characteristics of quinoa and amaranth seeds grown in Southern Italy. For this reason, quinoa Titicaca and three amaranth accessions (5, 12, and 14) were cultivated in different experimental fields in the Campania Region and analyzed for the cultivation aspects, chemical composition, and microbiological quality of the seeds. All seeds showed a good adaptability to cultivation in the experimental areas of the Mediterranean basin. Quinoa seeds were characterized by their higher protein, fat, and ash content than the amaranth seeds, which were characterized by their higher value in dietary fiber. All seeds, regardless of the geographical area of production, were contaminated with yeasts, moulds, and spore-forming bacteria, mainly Bacillus cereus, B. licheniformis, B. safensis and B. subtilis, as identified by 16S rRNA sequencing analysis. So, the detection of Bacillus spp. must be strongly monitored, as quinoa and amaranth seeds could be used in bread production, where they can cause ropiness, resulting in great economic losses for the industries.

8.
Food Res Int ; 169: 112945, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254369

RESUMO

Pink/red discoloration encompasses a series of relatively common spoilage defects of commercial dairy products. In this study, we used shotgun proteomics to identify the microorganism responsible for the production of intensely red-coloured slimes found on the surface of freshly opened commercial spreadable cheese and yogurt samples. Proteome-wide characterization of microbial proteins allowed to identify 1042 and 687 gene products from Rhodotorula spp. in spreadable cheese and yogurt samples, respectively, while no significant protein scores from other microorganisms were recorded. Subsequent microbiological analyses and sequencing of the 26S rRNA gene region supported the proteomic results demonstrating that the microorganism involved was Rhodotorula mucilaginosa, a carotenoid - producing basidiomycetous that can be potentially pathogenic to humans, especially for immunocompromised individuals. This is the first time that shotgun proteomics has been used to identify a microorganism responsible for spoilage in dairy products, proposing it as a relatively fast, sensitive, and reliable alternative or complement to conventional methods for microbial identification.


Assuntos
Queijo , Proteômica , Humanos , Leveduras , Laticínios/microbiologia , Queijo/microbiologia , Iogurte/microbiologia
9.
Microorganisms ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144451

RESUMO

BACKGROUND: Non-conventional yeasts (NCY) (i.e., non-Saccharomyces) may be used as alternative starters to promote biodiversity and quality of fermented foods and beverages (e.g., wine, beer, bakery products). METHODS: A total of 32 wine-associated yeasts (Campania region, Italy) were genetically identified and screened for decarboxylase activity and leavening ability. The best selected strains were used to study the leavening kinetics in model doughs (MDs). A commercial strain of Saccharomyces cerevisiae was used as the control. The volatile organic profiles of the inoculated MDs were analyzed by solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS). RESULTS: Most of strains belonged to the NCY species Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia kudriavzevii, Torulaspora delbruekii, and Zygotorulaspora florentina, while a few strains were S. cerevisiae. Most strains of H. uvarum lacked decarboxylase activity and showed a high leaving activity after 24 h of incubation that was comparable to the S. cerevisiae strains. The selected H. uvarum strains generated a different flavor profile of the doughs compared to the S. cerevisiae strains. In particular, NCY reduced the fraction of aldehydes that were potentially involved in oxidative phenomena. CONCLUSIONS: The use of NCY could be advantageous in the bakery industry, as they can provide greater diversity than S. cerevisiae-based products, and may be useful in reducing and avoiding yeast intolerance.

10.
Nutrients ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145058

RESUMO

The outermost constituent of many bacterial cells is represented by an S-layer, i.e., a semiporous lattice-like layer composed of self-assembling protein subunits called S-layer proteins (Slps). These proteins are involved in several processes, such as protecting against environmental stresses, mediating bacterial adhesion to host cells, and modulating gut immune response. Slps may also act as a scaffold for the external display of additional cell surface proteins also named S-layer associated proteins (SLAPs). Levilactobacillus brevis is an S-layer forming lactic acid bacterium present in many different environments, such as sourdough, milk, cheese, and the intestinal tract of humans and animals. This microorganism exhibits probiotic features including the inhibition of bacterial infection and the improvement of human immune function. The potential role of Slps in its probiotic and biotechnological features was documented. A shotgun proteomic approach was applied to identify in a single experiment both the Slps and the SLAPs pattern of five different L. brevis strains isolated from traditional sourdoughs of the Southern Italian region. This study reveals that these closely related strains expressed a specific pattern of surface proteins, possibly affecting their peculiar properties.


Assuntos
Levilactobacillus brevis , Proteômica , Animais , Humanos , Ácido Láctico/metabolismo , Levilactobacillus brevis/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Subunidades Proteicas/metabolismo
11.
Food Res Int ; 155: 111063, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400441

RESUMO

In the present study, bacterial and fungal diversity, as well as volatile profiles, of ready-to-eat Portuguese Painho de Porco Preto fermented sausages manufactured by two artisanal producers in the districts of Beja (producer A) and Evora (producer B) were studied. To this end, different selective growth media and a metataxonomic analysis were combined with Headspace Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS) analysis. The results of the microbiological viable counts revealed active microbial populations of lactic acid bacteria (up to 8 Log cfu g-1), coagulase negative cocci (up to 6 Log cfu g-1), and eumycetes (up to 6 Log cfu g-1). Bacterial populations were characterized by high relative frequencies of Latilactobacillus sakei (up to 72%), together with Weissella and Staphylococcus equorum. The mycobiota was mainly dominated by Debaryomyces hansenii (up to 55% of the relative frequency) and Kurtzmaniella zeylanoides (up to 24% of the relative frequency). Unexpected species as Wickerhamomyces subpelliculosus and Zygosaccharomyces rouxii were also detected. HS-SPME-GC/MS analysis allowed to identify a complex volatile profile, showing 159 volatile organic compounds (VOCs). VOCs belonged to twelve classes, such as aldehydes, ketones and lactones, esters and acetates, alcohols, terpenoids, sulfur compounds, aliphatic hydrocarbons, aromatic hydrocarbons, nitrogen compounds, acids, furans and pyrans, and phenols. The analysis of VOCs composition provided evidence that samples from the two producers (A and B) were different, as confirmed by the Principal Component Analysis. Hence, it is likely that the raw materials used, as well as variations related with the empirical practice of the butchers, strongly influenced the final product. The results obtained in the present study represent a further advancement in the knowledge on the biodiversity and VOCs composition of Portuguese fermented sausages. To better understand the interactions occurring between the autochthonous microorganisms and the meat batter in the Painho de Porco Preto fermented sausage, microbial and VOCs dynamics must be further deepened throughout the production process.


Assuntos
Produtos da Carne , Microbiota , Compostos Orgânicos Voláteis , Bactérias , Produtos da Carne/análise , Portugal , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise
12.
Food Res Int ; 154: 111019, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337592

RESUMO

The aim of the present study was to obtain information on the occurrence of bacteria and eumycetes in ready-to-eat fermented liver sausages manufactured by 20 artisan producers located in the Marche Region (Italy). To this end, culture-dependent analyses and metataxonomic sequencing were carried out. Physico-chemical parameters and volatilome of the fermented liver sausages were also studied. Finally, the presence of hepatitis E virus (HEV) was also assessed via real-time-RT-(q)PCR assays. Active microbial populations mainly represented by lactic acid bacteria, enterococci, coagulase-negative cocci, and eumycetes were detected. Enterobacteriaceae, Pseudomonadaceae, and sulfite-reducing anaerobes were not detected in most of the samples. Latilactobacillus sakei dominated in all the analyzed samples, reaching abundances up to 80%. Staphylococcus xylosus and Staphylococcus equorum were also detected. Among minority bacterial taxa, Weissella spp., Leuconostoc spp., Macrococcus caseolyticus, Brochothrix thermosphacta, Staphylococcus succinus, Lactobacillus coryniformis, Lactiplantibacillus plantarum, Lactococcus garviae, Psychrobacter spp., and Carnobacterium viridans were detected. The mycobiota was mainly composed by Debaryomyces hansenii that was present in all samples at the highest frequency. Among minority fungal taxa, Aspergillus spp., Penicillium spp., Kurtzmaniella zeylanoides, Candida spp., Yamadazyma spp., Scopulariopsis spp., Yarrowia spp., and Starmerella spp. were detected. Interestingly, associations between some taxa and some physico-chemical parameters were also discovered. The absence of HEV in all the samples attested a high level of safety. Finally, most of the VOCs detected in the analyzed fermented liver sausages belonged to six classes as: terpenoids, aldehydes, ketones, alcohols, esters, and acids. Nitrogen compounds, sulfur compounds, phenols, hydrocarbons, lactones, furans, and aromatic hydrocarbons were also identified. Several significant relationships were observed between mycobiota and VOCs.


Assuntos
Produtos da Carne , Compostos Orgânicos Voláteis , Yarrowia , Fermentação , Fígado/química , Produtos da Carne/análise , Compostos Orgânicos Voláteis/análise
13.
Microorganisms ; 10(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35056560

RESUMO

Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow's milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.

14.
Foods ; 10(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359398

RESUMO

The use of natural compounds as food preservatives is becoming increasingly popular as it is perceived positively by consumers. Among these substances, essential oils have attracted great interest owing to their antioxidant and antimicrobial properties. However, several challenges impair the use of essential oils in food products, such as their degradation or loss during food processing and storage, the strong aroma, even at low concentrations, which may negatively affect the sensory characteristics of food. In this context, the development of nanoformulations able to stabilize essential oils may represent a smart solution to this issue. The aim of the study was to evaluate the efficiency of alginate-based nanoformulations enriched with lemongrass (Cymbopogon nardus) essential oil (LEO) and Tween 80 against several fungi namely Penicillium expansus, Aspergillus niger and Rhizopus spp. Firstly, the flow behavior of systems at different concentrations of alginate (1%, 2% and 3% w/w) were studied. Then, emulsion-based nanoformulations at different concentrations of lemongrass essential oil in the range of 0-2% w/w were stabilized by a fixed amount of Tween 80, characterized and tested for their antifungal activity. Our results showed that the best nanoformulation able to inhibit Rhizopus spp., Penicillium expansum and Aspergillus niger, for at least 10 days, was constituted by 1% alginate/1.5% LEO/1% Tween 80. Hence, the incorporation of essential oil into nanoformulation systems may represent a valid alternative to overcome the disadvantages that limit the commercial application of essential oils.

15.
Food Chem ; 359: 129955, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34010753

RESUMO

The aim of this study was to evaluate the dynamics of proteolysis during dough fermentation started with different lactic acid bacteria species, through the identification of intermediate and small-sized peptides generated during fermentation. Single-strain cultures of Levilactobacillus brevis, Fructilactobacillus sanfranciscensis, Companilactobacillus alimentarius, and Leuconostoc pseudomesenteroides were assayed as sourdough starters. Assays were carried out at lab-scale for 48 h of fermentation, using both unstarted and yeast-leavened dough as controls. Physicochemical and microbiological analyses were combined with peptidomic and proteomic profiling, identifying several hundreds of peptides mainly released from the water-soluble wheat proteins, including ß-amylase, triticin, and serpins. Both α- and γ-gliadins were hydrolyzed, though only at the N-terminal domain, while the central protein region - encrypting celiac disease epitopes- remained unaffected. The bacterial-mediated consumption of sugars and the concomitant hydrolysis of starch degrading ß-amylase could underlie improved digestibility and several nutritionally beneficial effects of sourdough baked products.


Assuntos
Fermentação , Proteômica , Triticum/metabolismo , Leveduras/metabolismo , Pão/análise , Farinha/análise , Gliadina/metabolismo , Proteólise
16.
Food Res Int ; 136: 109567, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846606

RESUMO

Among typical Portuguese sausages, the cacholeira blood sausage undoubtedly represents one of the most popular preparations. To the authors' knowledge, a lack of information on both the microbiota and the volatile organic compounds (VOCs) of this blood-containing sausage emerges from the available scientific literature. This study represents the first characterization of physico-chemical, microbiological and volatile traits of Portuguese cacholeira blood sausage. To this end, ready-to-eat cacholeira blood sausages were collected from two production batches manufactured in summer (batch 1) and autumn (batch 2). Viable counts showed active microbial communities mainly composed by lactic acid bacteria, coagulase negative cocci, enterococci and eumycetes. The metataxonomic approach showed a simple bacterial composition, which was dominated by Lactobacillus sakei in both the analyzed batches (1 and 2) considered. Carnobacterium, Enterococcus, Kluyvera, Lactococcus and Serratia were found as minor genera. The mycobiota varied according to the production season. Batch 1 was dominated by Starmerella apicola, Debaryomyces hansenii and Candida tropicalis, whereas batch 2 was dominated by D. hansenii. Moreover, Aspergillus spp., Kurtzmaniella zeylanoides, Saccharomyces cerevisiae, Kurtzmaniella santamariae, Brettanomyces bruxellensis and Pichia kluyveri were detected in both the batches as minority species. Seventy-two volatile compounds were identified, including esters, phenols, terpenoids, acids, alcohols, ketones, aldehydes, lactones, furans, sulphur and nitrogen compounds. Significant differences were seen in the amount of some compounds, as a feasible consequence of differences in the raw materials, artisan production and seasonality.


Assuntos
Microbiota , Compostos Orgânicos Voláteis , Brettanomyces , Fermentação , Pichia , Portugal , Saccharomycetales , Paladar
17.
Food Sci Nutr ; 8(4): 1837-1847, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328249

RESUMO

This study aimed to develop a low-calorie apricot nectar by replacing sucrose with different amount of Stevia rebaudiana bertoni (Rebaudioside A, 98%). Stevia has become very popular as sweetener for the production of low-calorie products but its addition could be a challenge for industry, since it could modify sensory features of the product and consumers' acceptance. To this end, apricot nectars without sugar, with sucrose 10%, and with different amounts of stevia were produced and evaluated for microbiological quality using the pour-plate technique, and physicochemical (pH, TTA, and a w) and nutritional (moisture, fat, protein, carbohydrates, and ash) characteristics. Furthermore, a sensory analysis of the samples was performed by a panel of trained judges using quantitative descriptive analysis. The effect of stevia addiction on the consumers' acceptance was investigated by 102 consumers of fruit juices that evaluated the overall acceptability of the samples using a structured 9-point hedonic scale. Levels of microbial groups in nectars were under the detection limit confirming a good hygienic practice within the production. Nectars produced with stevia resulted in significant reduction in caloric value from 86 kcal (nectar with 10% sucrose) to 49 kcal (nectars with stevia), without altering its typicality. Different sensory profiles among samples were pointed out; all the products are liked, but with a different level of pleasantness. The study highlighted that the apricot nectars with 0.07% stevia are characterized for sweet and liquorice aroma notes and received the same level of consumer acceptability of nectars produced with 10% sucrose.

18.
Front Microbiol ; 10: 1621, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396170

RESUMO

This study identified the lactic acid bacteria (LAB) biota and the volatilome profile of 28 typical sourdoughs of Irpinia-a large area of the Campania region of Southern Italy where numerous breads are produced, even today, following the ancient procedures of sourdough fermentation and for which information on the microbiological and sensory profile is lacking in literature. For this purpose, microbial quality, LAB biodiversity, chemical, and technological characteristics, as well as aroma profile by solid-phase microextraction technique (SPME)-gas chromatography/mass spectrometry (GC/MS) of Irpinian sourdoughs were investigated. The dominant LAB microbiota was examined by both culture-dependent and culture-independent methods Polymerase Chain Reaction/Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Results showed a high biodiversity in LAB community whereas the most frequent lactobacilli species recognized were Lactobacillus plantarum (ca. 22% of total LAB isolates), Lactobacillus sanfranciscensis (11%), Lactobacillus paralimentarius (8%), and Lactobacillus rossiae (6.5%), whereas LAB cocci could be mainly referred to Pediococcus pentosaceus (9.5% of total LAB isolates), Leuconostoc spp. (7.8%), and Weissella cibaria (7.7%). Sourdoughs were characterized by the dominance of one or two LAB species, thus proving that the environment influences the selection and the establishment of few key LAB species and that no specific correlation can be traced between microbial composition and geographical origin of the samples. Furthermore, although sourdoughs were characterized by different qualitative and quantitative volatile organic compound (VOC) compositions, no noticeable correlation between volatilome profile and geographical origin was found. However, it emerged that for more isolated locations, it was possible to find the existence of microbial biotypes and sensory profiles with a strong identity, thus revealing the existence of highly traditional and evocative bread recipes in those geographical contexts.

19.
Front Microbiol ; 9: 429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593679

RESUMO

This study identified the odor-active compounds and the qualitative characteristics of doughs from "ancient" grains flours fermented by lactic acid bacteria. For this purpose doughs made with quinoa and Kamut® flours have been produced and inoculated with strains belonging to the species Lactobacillus paracasei, Lactobacillus plantarum and Lactobacillus brevis and compared with fermented doughs made from 100% wheat flour. The quality of the doughs was determined by assessment of pH, total titratable acidity, lactic acid bacteria growth and flavor compounds. The results showed that lactic acid bacteria used were able to grow in the different substrates reaching more than 9.0 log CFU/g after 24 h fermentation, although the best microbial growth was recorded in the doughs made with quinoa flour fermented with Lactobacillus paracasei I1. Good acidification and heterogeneous aromatic profile were recognized in all the doughs even if the volatile composition mainly derived from microbial specie. Among all the used strains, mostly Lactobacillus paracasei I1 positively contributed to the aromatic profile of the doughs, independently from flour type, producing the highest amount of different ketones such as, diacetyl, acetoin, 2,6-dimethyl-4-heptanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, volatile compounds highly appreciated in the bakery products for their buttery, fatty and fruity notes. So, the positive characteristic of Lactobacillus paracasei I1 to enhance the production of desired volatile compounds could make it suitable as adjunct culture starter in the bakery industry. Many differences in volatile organic compounds derived also by the type of flour used. Quinoa fermented doughs were characterized for specific nutty, roasted, acid and buttery tones derived from pyrazines, ketones and acid compounds whereas Kamut® fermented doughs were characterized for fruity, rose, green and sweet tones derived from aldehydes and ketones production. So, the use of quinoa and Kamut® flours opportunely fermented, as partial or complete substitution of wheat flour, may be interesting for producing more balanced bakery products with respect to nutritional aspects and to unique aromatic profile. Furthermore, the supplementation of these flours, rich in protein content and free amino acids, could represent an optimal substrate to enhance the growth of lactic acid bacteria used as starter culture in leavened bakery products.

20.
J Food Sci ; 81(1): M97-105, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26556435

RESUMO

In the present study, a multiple approach was used to characterize Malpighia punicifolia extract and to evaluate its inhibitory activity against several meat spoilage bacteria. First, volatile fraction, vitamins and phenolic compounds of the extract obtained by supercritical fluid extraction were determined by GC-MS and HPLC. Then, the antimicrobial action of the extract was in vitro evaluated against Pseudomonas putida DSMZ 291(T), Pseudomonas fluorescens DSMZ 50009(T), Pseudomonas fragi DSMZ 3456(T), and Brochothrix thermosphacta DSMZ 20171(T) by the agar well diffusion assay and by the agar dilution test. Based on the results of the minimum inhibitory concentration (MIC) against the assayed bacteria, 4 different concentrations of the extract were used in a challenge test on water buffalo steaks stored for 21 d at 4 °C. Results of chemical analyses showed that M. punicifolia extract is characterized by the presence of several compounds, already described for their antimicrobial (phenolic acids, flavonones, and furanes) and antioxidant (ascorbic acid) properties. The in vitro detection of antimicrobial activities highlighted that the extract, used at 8% concentration, was able to inhibit all the target bacteria. Moreover, very low MIC values (up to 0.025%) were detected. In situ tests, performed on water buffalo steaks treated with the extract in the concentration range 0.025% to 0.05%, showed a strong inhibition of both intentionally inoculated bacteria and naturally occurring microorganisms. Positive results, in terms of color and odor, were also observed during the entire storage of steaks preserved with the extract.


Assuntos
Antibacterianos/farmacologia , Conservantes de Alimentos/farmacologia , Malpighiaceae/química , Carne/microbiologia , Extratos Vegetais/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Búfalos , Microbiologia de Alimentos , Conservação de Alimentos , Armazenamento de Alimentos , Carne/análise , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA