Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Physiol Rev ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990068

RESUMO

Lipids represent the most abundant molecular type in the brain with a fat content of approximately 60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid and endocannabinoids finely regulate both synaptic receptors and ion channels that insure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.

2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675271

RESUMO

A broad range of data identify Ca2+-permeable amyloid pores as the most neurotoxic species of Alzheimer's ß-amyloid peptide (Aß1-42). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer's disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aß1-42 binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aß1-42 cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca2+ entry by competitive inhibition of Aß1-42 binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer's, Parkinson's, and related proteinopathies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Gangliosídeos/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Microdomínios da Membrana/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362170

RESUMO

Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer's and Parkinson's diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aß (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood-brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood-brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer's and Parkinson's diseases in future clinical trials in humans.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Animais , Humanos , Ratos , Doença de Parkinson/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Ratos Endogâmicos Lew , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas Amiloidogênicas/metabolismo
4.
Adv Protein Chem Struct Biol ; 128: 289-324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034721

RESUMO

Gangliosides are anionic lipids that form condensed membrane clusters (lipid rafts) and exert major regulatory functions on a wide range of proteins. In this review, we propose a new view of the structural features of gangliosides with special emphasis on emerging properties associated with protein binding modes. We analyze the different possibilities of molecular associations of gangliosides in lipid rafts and the role of cholesterol in this organization. We are particularly interested in amide groups of N-acetylated sugars which make it possible to neutralize the negative charge of the carboxylate group of sialic acids. We refer to this effect as "NH trick" and we demonstrate that it is operative in GM1, GD1a, GD1b and GT1b gangliosides. The NH trick is key to understand the different topologies adopted by gangliosides (chalice-like at the edge of lipid rafts, condensed clusters in central areas) and their impact on protein binding. We define three major types of ganglioside-binding domains (GBDs): α-helical, loop shaped, and large flat surface. We describe the mode of interaction of each GBD with typical reference proteins: synaptotagmin, 5HT1A receptor, cholera and botulinum toxins, HIV-1 surface envelope glycoprotein gp120, SARS-CoV-2 spike protein, cellular prion protein, Alzheimer's ß-amyloid peptide and Parkinson's disease associated α-synuclein. We discuss the common mechanisms and peculiarities of protein binding to gangliosides in the light of physiological and pathological conditions. We anticipate that innovative ganglioside-based therapies will soon show an exponential growth for the treatment of cancer, microbial infections, and neurodegenerative diseases.


Assuntos
COVID-19 , Peptídeos beta-Amiloides , Gangliosídeos , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
5.
Glycoconj J ; 39(1): 1-11, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34328594

RESUMO

Parkinson's disease (PD) is a major neurodegenerative disorder which exhibits many of the characteristics of a pandemic. Current therapeutic strategies are centered on the dopaminergic system, with limited efficacy, so that a treatment that has a direct impact on the underlying disease pathogenesis is urgently needed. Although α-synuclein is a privileged target for such therapies, this protein has been in the past wrongly considered as exclusively intracellular, so that the impact of paracrine neurotoxicity mechanisms in PD have been largely ignored. In this article we review the data showing that lipid rafts act as plasma membrane machineries for the formation of α-synuclein pore-like oligomers which trigger an increase of intracellular Ca2+. This Ca2+ influx is responsible for a self-sustained cascade of neurotoxic events, including mitochondrial oxidative stress, tau phosphorylation, Ca2+ release from the endoplasmic reticulum, Lewy body formation, and extracellular release of α-synuclein in exosomes. The first step of this cascade is the binding of α-synuclein to lipid raft gangliosides, suggesting that PD should be considered as both a proteinopathy and a ganglioside membrane disorder lipidopathy. Accordingly, blocking α-synuclein-ganglioside interactions should annihilate the whole neurotoxic cascade and stop disease progression. A pipeline of anti-oligomer molecules is under development, among which an in-silico designed synthetic peptide AmyP53 which is the first drug targeting gangliosides and thus able to prevent the formation of α-synuclein oligomers and all downstream neurotoxicity. These new therapeutic avenues challenge the current symptomatic approaches by finally targeting the root cause of PD through a long-awaited paradigm shift.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Progressão da Doença , Gangliosídeos/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768981

RESUMO

We present here a gene therapy approach aimed at preventing the formation of Ca2+-permeable amyloid pore oligomers that are considered as the most neurotoxic structures in both Alzheimer's and Parkinson's diseases. Our study is based on the design of a small peptide inhibitor (AmyP53) that combines the ganglioside recognition properties of the ß-amyloid peptide (Aß, Alzheimer) and α-synuclein (α-syn, Parkinson). As gangliosides mediate the initial binding step of these amyloid proteins to lipid rafts of the brain cell membranes, AmyP53 blocks, at the earliest step, the Ca2+ cascade that leads to neurodegeneration. Using a lentivirus vector, we genetically modified brain cells to express the therapeutic coding sequence of AmyP53 in a secreted form, rendering these cells totally resistant to oligomer formation by either Aß or α-syn. This protection was specific, as control mCherry-transfected cells remained fully sensitive to these oligomers. AmyP53 was secreted at therapeutic concentrations in the supernatant of cultured cells, so that the therapy was effective for both transfected cells and their neighbors. This study is the first to demonstrate that a unique gene therapy approach aimed at preventing the formation of neurotoxic oligomers by targeting brain gangliosides may be considered for the treatment of two major neurodegenerative disorders, Alzheimer's and Parkinson's diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Gangliosídeos/metabolismo , Terapia Genética/métodos , Humanos
7.
Int J Antimicrob Agents ; 55(5): 105960, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32251731

RESUMO

The recent emergence of the novel pathogenic SARS-coronavirus 2 (SARS-CoV-2) is responsible for a worldwide pandemic. Given the global health emergency, drug repositioning is the most reliable option to design an efficient therapy for infected patients without delay. The first step of the viral replication cycle [i.e. attachment to the surface of respiratory cells, mediated by the spike (S) viral protein] offers several potential therapeutic targets. The S protein uses the angiotension-converting enzyme-2 (ACE-2) receptor for entry, but also sialic acids linked to host cell surface gangliosides. Using a combination of structural and molecular modelling approaches, this study showed that chloroquine (CLQ), one of the drugs currently under investigation for SARS-CoV-2 treatment, binds sialic acids and gangliosides with high affinity. A new type of ganglioside-binding domain at the tip of the N-terminal domain of the SARS-CoV-2 S protein was identified. This domain (111-158), which is fully conserved among clinical isolates worldwide, may improve attachment of the virus to lipid rafts and facilitate contact with the ACE-2 receptor. This study showed that, in the presence of CLQ [or its more active derivative, hydroxychloroquine (CLQ-OH)], the viral S protein is no longer able to bind gangliosides. The identification of this new mechanism of action of CLQ and CLQ-OH supports the use of these repositioned drugs to cure patients infected with SARS-CoV-2. The in-silico approaches used in this study might also be used to assess the efficiency of a broad range of repositioned and/or innovative drug candidates before clinical evaluation.


Assuntos
Betacoronavirus/efeitos dos fármacos , Cloroquina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Hidroxicloroquina/farmacologia , Pneumonia Viral/tratamento farmacológico , Sequência de Aminoácidos , Betacoronavirus/química , COVID-19 , Cloroquina/química , Cloroquina/uso terapêutico , Humanos , Hidroxicloroquina/química , Hidroxicloroquina/uso terapêutico , Modelos Moleculares , Terapia de Alvo Molecular , Pandemias , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , SARS-CoV-2 , Análise de Sequência de Proteína , Glicoproteína da Espícula de Coronavírus/química
9.
Elife ; 72018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30355446

RESUMO

Lipids are structural components of cellular membranes and signaling molecules that are widely involved in development and diseases, but the underlying molecular mechanisms are poorly understood, partly because of the vast variety of lipid species and complexity of synthetic and turnover pathways. From a genetic screen, we identify that mannosyl glucosylceramide (MacCer), a species of glycosphingolipid (GSL), promotes synaptic bouton formation at the Drosophila neuromuscular junction (NMJ). Pharmacological and genetic analysis shows that the NMJ growth-promoting effect of MacCer depends on normal lipid rafts, which are known to be composed of sphingolipids, sterols and select proteins. MacCer positively regulates the synaptic level of Wnt1/Wingless (Wg) and facilitates presynaptic Wg signaling, whose activity is raft-dependent. Furthermore, a functional GSL-binding motif in Wg exhibiting a high affinity for MacCer is required for normal NMJ growth. These findings reveal a novel mechanism whereby the GSL MacCer promotes synaptic bouton formation via Wg signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Glicoesfingolipídeos/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt1/metabolismo , Animais
10.
Biomolecules ; 8(2)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789479

RESUMO

Anandamide is a lipid neurotransmitter derived from arachidonic acid, a polyunsaturated fatty acid. The chemical differences between anandamide and arachidonic acid result in a slightly enhanced solubility in water and absence of an ionisable group for the neurotransmitter compared with the fatty acid. In this review, we first analyze the conformational flexibility of anandamide in aqueous and membrane phases. We next study the interaction of the neurotransmitter with membrane lipids and discuss the molecular basis of the unexpected selectivity of anandamide for cholesterol and ceramide from among other membrane lipids. We show that cholesterol behaves as a binding partner for anandamide, and that following an initial interaction mediated by the establishment of a hydrogen bond, anandamide is attracted towards the membrane interior, where it forms a molecular complex with cholesterol after a functional conformation adaptation to the apolar membrane milieu. The complex is then directed to the anandamide cannabinoid receptor (CB1) which displays a high affinity binding pocket for anandamide. We propose that cholesterol may regulate the entry and exit of anandamide in and out of CB1 by interacting with low affinity cholesterol recognition sites (CARC and CRAC) located in transmembrane helices. The mirror topology of cholesterol binding sites in the seventh transmembrane domain is consistent with the delivery, extraction and flip-flop of anandamide through a coordinated cholesterol-dependent mechanism. The binding of anandamide to ceramide illustrates another key function of membrane lipids which may occur independently of protein receptors. Interestingly, ceramide forms a tight complex with anandamide which blocks the degradation pathway of both lipids and could be exploited for anti-cancer therapies.


Assuntos
Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Ceramidas/metabolismo , Colesterol/metabolismo , Endocanabinoides/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Humanos , Receptores de Canabinoides/metabolismo
11.
Curr Top Membr ; 80: 3-23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863821

RESUMO

Cholesterol is a ubiquitous neutral lipid, which finely tunes the activity of a wide range of membrane proteins, including neurotransmitter and hormone receptors and ion channels. Given the scarcity of available X-ray crystallographic structures and the even fewer in which cholesterol sites have been directly visualized, application of in silico computational methods remains a valid alternative for the detection and thermodynamic characterization of cholesterol-specific sites in functionally important membrane proteins. The membrane-embedded segments of the paradigm neurotransmitter receptor for acetylcholine display a series of cholesterol consensus domains (which we have coined "CARC"). The CARC motif exhibits a preference for the outer membrane leaflet and its mirror motif, CRAC, for the inner one. Some membrane proteins possess the double CARC-CRAC sequences within the same transmembrane domain. In addition to in silico molecular modeling, the affinity, concentration dependence, and specificity of the cholesterol-recognition motif-protein interaction have recently found experimental validation in other biophysical approaches like monolayer techniques and nuclear magnetic resonance spectroscopy. From the combined studies, it becomes apparent that the CARC motif is now more firmly established as a high-affinity cholesterol-binding domain for membrane-bound receptors and remarkably conserved along phylogenetic evolution.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Motivos de Aminoácidos , Humanos , Domínios Proteicos
12.
Data Brief ; 14: 163-167, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28795093

RESUMO

Anandamide is a lipid neurotransmitter that interacts with various plasma membrane lipids. The data here consists of molecular dynamics simulations of anandamide, C18-ceramide and cholesterol performed in vacuo and within a hydrated palmitoyl-oleoyl-phosphatidylcholine (POPC)/cholesterol membrane. Several models of anandamide/cholesterol and anandamide/ceramide complexes are presented. The energy of interaction and the nature of the intermolecular forces involved in each of these complexes are detailed. The impact of water molecules hydrating the POPC/cholesterol membrane for the stability of the anandamide/cholesterol and anandamide/ceramide complexes is also analyzed. From a total number of 1920 water molecules stochatiscally merged with the lipid matrix, 48 were eventually redistributed around the polar head groups of the anandamide/ceramide complex, whereas only 15 reached with the anandamide/cholesterol complex. The interpretation of this dataset is presented in the accompanying article "Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells" [1].

13.
Chem Phys Lipids ; 205: 11-17, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28389107

RESUMO

Anandamide (AEA) is a ubiquitous lipid that exerts neurotransmitter functions but also controls important biological functions such as proliferation, survival, or programmed cell death. The latter effects are also regulated by ceramide, a lipid enzymatically generated from sphingomyelin hydrolysis by sphingomyelinase. Ceramide has been shown to increase the cellular toxicity of AEA, but the mechanisms controlling this potentiating effect remained unclear. Here we have used a panel of in silico, physicochemical, biochemical and cellular approaches to study the crosstalk between AEA and ceramide apoptotic pathways. Molecular dynamics simulations indicated that AEA and ceramide could form a stable complex in phosphatidylcholine membranes. Consistent with these data, we showed that AEA can specifically insert into ceramide monolayers whereas it did not penetrate into sphingomyelin membranes. Then we have studied the effects of ceramide on AEA-induced toxicity of human neuroblastoma cells. In these experiments, the cells have been either naturally enriched in ceramide by neutral sphingomyelinase pre-incubation or treated with C2-ceramide, a biologically active ceramide analog. Both treatments significantly increased the cytotoxicity of AEA as assessed by the MTS mitochondrial toxicity assay. This effect was correlated with the concomitant accumulation of natural ceramide (or its synthetic analog) and AEA in the cells. A kinetic study of AEA hydrolysis showed that ceramide inhibited the fatty acid amino hydrolase (FAAH) activity in cell extracts. Taken together, these data suggested that ceramide binds to AEA, increases its half-life and potentiates its cytotoxicity. Overall, these mechanisms account for a functional cross-talk between AEA and ceramide apoptotic pathways.


Assuntos
Ácidos Araquidônicos/química , Membrana Celular/química , Ceramidas/química , Endocanabinoides/química , Lipídeos de Membrana/química , Neuroblastoma/patologia , Alcamidas Poli-Insaturadas/química , Apoptose , Ácidos Araquidônicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Ceramidas/metabolismo , Colesterol/metabolismo , Endocanabinoides/metabolismo , Meia-Vida , Humanos , Hidrolases/metabolismo , Hidrólise , Lipídeos de Membrana/metabolismo , Membranas Artificiais , Modelos Moleculares , Simulação de Dinâmica Molecular , Neuroblastoma/metabolismo , Alcamidas Poli-Insaturadas/metabolismo
14.
Methods Mol Biol ; 1583: 7-19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28205163

RESUMO

In eukaryotic cells, cholesterol is an important regulator of a broad range of membrane proteins, including receptors, transporters, and ion channels. Understanding how cholesterol interacts with membrane proteins is a difficult task because structural data of these proteins complexed with cholesterol are scarce. Here, we describe a dual approach based on in silico studies of protein-cholesterol interactions, combined with physico-chemical measurements of protein insertion into cholesterol-containing monolayers. Our algorithm is validated through careful analysis of the effect of key mutations within and outside the predicted cholesterol-binding site. Our method is illustrated by a complete analysis of cholesterol-binding to Alzheimer's ß-amyloid peptide, a protein that penetrates the plasma membrane of brain cells through a cholesterol-dependent process.


Assuntos
Algoritmos , Peptídeos beta-Amiloides , Colesterol , Simulação por Computador , Análise de Sequência de Proteína/métodos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Colesterol/química , Colesterol/genética , Colesterol/metabolismo , Humanos , Domínios Proteicos
15.
Sci Rep ; 6: 28781, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27352802

RESUMO

Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer's and Parkinson's diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aß1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aß peptide (Alzheimer) did no longer form Ca(2+)-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined "membrane therapy") targeting amyloid pores formed by Aß1-42 and α-synuclein.


Assuntos
Peptídeos beta-Amiloides/fisiologia , alfa-Sinucleína/fisiologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Cálcio/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Colesterol/fisiologia , Ciclodextrinas/farmacologia , Gangliosídeos/fisiologia , Humanos , Fragmentos de Peptídeos/farmacologia , Domínios Proteicos , alfa-Sinucleína/química
16.
Chem Phys Lipids ; 199: 52-60, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26987951

RESUMO

The molecular mechanisms that control the multiple possible modes of protein association with membrane cholesterol are remarkably convergent. These mechanisms, which include hydrogen bonding, CH-π stacking and dispersion forces, are used by a wide variety of extracellular proteins (e.g. microbial or amyloid) and membrane receptors. Virus fusion peptides penetrate the membrane of host cells with a tilted orientation that is compatible with a transient interaction with cholesterol; this tilted orientation is also characteristic of the process of insertion of amyloid proteins that subsequently form oligomeric pores in the plasma membrane of brain cells. Membrane receptors that are associated with cholesterol generally display linear consensus binding motifs (CARC and CRAC) characterized by a triad of basic (Lys/Arg), aromatic (Tyr/phe) and aliphatic (Leu/Val) amino acid residues. In some cases, the presence of both CARC and CRAC within the same membrane-spanning domain allows the simultaneous binding of two cholesterol molecules, one in each membrane leaflet. In this review the molecular basis and the functional significance of the different modes of protein-cholesterol interactions in plasma membranes are discussed.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Colesterol/química , Sequência Consenso , Humanos , Domínios Proteicos
17.
Sci Rep ; 6: 21907, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26915987

RESUMO

Cholesterol controls the activity of a wide range of membrane receptors through specific interactions and identifying cholesterol recognition motifs is therefore critical for understanding signaling receptor function. The membrane-spanning domains of the paradigm neurotransmitter receptor for acetylcholine (AChR) display a series of cholesterol consensus domains (referred to as "CARC"). Here we use a combination of molecular modeling, lipid monolayer/mutational approaches and NMR spectroscopy to study the binding of cholesterol to a synthetic CARC peptide. The CARC-cholesterol interaction is of high affinity, lipid-specific, concentration-dependent, and sensitive to single-point mutations. The CARC motif is generally located in the outer membrane leaflet and its reverse sequence CRAC in the inner one. Their simultaneous presence within the same transmembrane domain obeys a "mirror code" controlling protein-cholesterol interactions in the outer and inner membrane leaflets. Deciphering this code enabled us to elaborate guidelines for the detection of cholesterol-binding motifs in any membrane protein. Several representative examples of neurotransmitter receptors and ABC transporters with the dual CARC/CRAC motifs are presented. The biological significance and potential clinical applications of the mirror code are discussed.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Receptores Colinérgicos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Motivos de Aminoácidos , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Ligação Proteica , Receptores Colinérgicos/química , Receptores Colinérgicos/genética
18.
Data Brief ; 6: 640-3, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26909380

RESUMO

The data here consists of calcium imaging of human neuroblastoma SH-SY5Y cells treated with the calcium-sensitive dye Fluo-4AM and then incubated with nanomolar concentrations of either human or rat Alzheimer's ß-amyloid peptide Aß1-42. These data are both of a qualitative (fluorescence micrographs) and semi-quantitative nature (estimation of intracellular calcium concentrations of cells probed by Aß1-42 peptides vs. control untreated cells). Since rat Aß1-42 differs from its human counterpart at only three amino acid positions, this comparative study is a good assessment of the specificity of the amyloid pore forming assay. The interpretation of this dataset is presented in the accompanying study "Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides" [1].

19.
Biochim Biophys Acta ; 1862(2): 213-22, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26655601

RESUMO

Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's ß-amyloid (Aß1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aß/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aß1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aß1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aß1-42 on synaptic vesicle trafficking and decreased the Aß1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Gangliosídeos/metabolismo , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/metabolismo , alfa-Sinucleína/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Linhagem Celular , Humanos , Doença de Parkinson/patologia , Permeabilidade , Ratos Wistar , Zinco/metabolismo
20.
Biochemistry ; 53(28): 4489-502, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25000142

RESUMO

Brain cholesterol plays a critical role in Alzheimer's disease and other neurodegenerative diseases. The molecular mechanisms linking cholesterol to neurotoxicity have remained elusive for a long time, but recent data have allowed the identification of functional cholesterol-binding domains in several amyloidogenic proteins involved in neurodegenerative diseases, including Alzheimer's disease. In this review, we analyze the cholesterol binding properties of ß-amyloid (Aß) peptides and the impact of these interactions on amyloid pore formation. We show that although the cholesterol-binding domains of Aß peptides and of transmembrane precursor C99 are partially overlapping, they involve distinct amino acid residues, so that cholesterol has a greater affinity for Aß than for C99. Synthetic 22-35 and 25-35 fragments of Aß retained the ability of the full-length peptide 1-42 to bind cholesterol and to form zinc-sensitive, calcium-permeable amyloid pores in cultured neural cells. Studies with mutant peptides allowed the identification of key residues involved in cholesterol binding and channel formation. Cholesterol promoted the insertion of Aß in the plasma membrane, induced α-helical structuration, and forced the peptide to adopt a tilted topology that favored the oligomerization process. Bexarotene, an amphipathic drug currently considered as a potential candidate medication for the treatment of neurodegenerative diseases, competed with cholesterol for binding to Aß and prevented oligomeric channel formation. These studies indicate that it is possible to prevent the generation of neurotoxic oligomers by targeting the cholesterol-binding domain of Aß peptides. This original strategy could be used for the treatment of Alzheimer's and other neurodegenerative diseases that involve cholesterol-dependent toxic oligomers.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Multimerização Proteica , Peptídeos beta-Amiloides/síntese química , Peptídeos beta-Amiloides/química , Membrana Celular/química , Colesterol/química , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA