Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239847

RESUMO

Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Neoplasias , Psoríase , Dermatopatias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Dermatopatias/genética , Dermatopatias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Psoríase/genética , Psoríase/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239925

RESUMO

This Special Issue focused on the complex role played by MSCs in the onset and development of inflammatory diseases: MSCs can support or counteract inflammation and, in turn, the onset of disease [...].


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Fibrose , Inflamação , Transdução de Sinais
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499401

RESUMO

Mesenchymal Stem Cells (MSCs) are multipotent non-hematopoietic stromal cells found in different body tissues such as bone marrow, adipose tissue, periosteum, Wharton's jelly, umbilical cord, blood, placenta, amniotic fluid, and skin. The biological behavior of MSCs depends mainly on their interaction with the microenvironment in which they are found, whose quality deeply influences the regenerative and immunomodulatory properties of these cells. Several studies confirm the interaction between MSCs and inflammatory microenvironment in the pathogenesis of psoriasis, designating MSCs as an important factor driving psoriasis development. This review aims to describe the most recent evidence on how the inflammatory microenvironment that characterizes psoriasis influences the homeostasis of MSCs and how they can be used to treat the disease.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Gravidez , Feminino , Humanos , Diferenciação Celular , Cordão Umbilical , Líquido Amniótico
4.
J Clin Med ; 11(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36013001

RESUMO

Atopic dermatitis (AD) is an inflammatory disease that typically begins in childhood and may persist into adulthood, becoming a lifelong condition. The major inflammatory mediators of AD are known to be interleukin IL4 and IL13, so Dupilumab, which is able to inhibit both interleukins by blocking the shared IL4Rα subunit, has become an attractive option for treating AD. Mesenchymal stem cells (MSCs) are involved in the onset and development of AD by secreting specific interleukins. The aim of this study was to isolate MSCs from healthy controls (C-MSCs) and patients with AD before (AD-MSCs T0) and after 16 weeks of treatment with Dupilumab (AD-MSCs T16); to evaluate the expression mainly of IL4 and IL13 and of other inflammatory cytokines in C-MSCs, AD-MSCs at T0 and at T16; and to evaluate the efficacy of Dupilumab on MSCs immunobiology. C- and AD-MSCs (T0, T16) were isolated from skin specimens and characterized; the expression/secretion of IL4 and IL13 was evaluated using immuno-cytochemistry (ICC), indirect immune-fluorescence (IIF) and an ELISA test; secretion of IL2, IL4, IL5, IL6, IL10, IL12, IL13, IL17A, Interferon gamma (IFNγ), Tumor necrosis factor alpha (TNFα), Granulocyte Colony-Stimulating Factor (G-CSF), and Transforming Growth Factor beta1 (TGFß1) were measured with ELISA. IL13 and IL6 were over-expressed, while IL4 was down-regulated in AD-MSCs at T0 compared to C-MSCs. IL6 and IL13 expression was restored after 16 weeks of Dupilumab treatment, while no significant effects on IL4 expression were noted. Finally, IL2, IL5, IL10, IL12, IL17A, INFγ, TNFα, G-CSF, and TGFß1 were similarly secreted by C- and AD-MSCs. Although Dupilumab blocks the IL4Rα subunit shared by IL4 and IL13, it is evident that its real target is IL13, and its ability to target IL13 in MSCs reinforces the evidence, already known in differentiated cells, of the central role IL13 rather than IL4 in the development of AD. The inflammatory cascade in AD begins at the mesenchymal level, so an upstream therapeutic intervention, able to modify the immunobiology of atopic MSCs, could potentially change the natural history of the disease.

5.
Genes (Basel) ; 13(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35885889

RESUMO

The aetiology of leiomyoma is debated; however, dysregulated progenitor cells or miRNAs appear to be involved. Previous profiling analysis of miRNA in healthy myometrium- (M-MSCs) and leiomyoma- (L-MSCs) derived mesenchymal stem cells (MSCs) identified 15 miRNAs differentially expressed between M-MSCs and L-MSCs. Here, we try to elucidate whether these differentially regulated 15 miRNAs arise as a conversion of M-MSCs along the differentiation process or whether they may originate from divergent cell commitment. To trace the origin of the dysregulation, a comparison was made of the expression of miRNAs previously identified as differentially regulated in M-MSCs and L-MSCs with that detected in MSCs from amniotic fluid (considered as a substitute for embryonic cells). The results do not allow for a foregone conclusion: the miRNAs converging to the adherens junction pathway showed a gradual change along the differentiation process, and the miRNAs which coincided with the other three pathways (ECM-receptor interaction, TGFß and cell cycle) showed a complex, not linear, regulation and, therefore, a trend along the hypothetical differentiation process was not deduced. However, the role of miRNAs appears to be predominant in the onset of leiomyoma and may follow two different mechanisms (early commitment; exacerbation); furthermore, miRNAs can support the observed (epigenetic) predisposition.


Assuntos
Leiomioma , Células-Tronco Mesenquimais , MicroRNAs , Diferenciação Celular/genética , Feminino , Humanos , Leiomioma/genética , Leiomioma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miométrio/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 816229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282448

RESUMO

Background: In Cushing's syndrome (CS), chronic glucocorticoid excess (GC) and disrupted circadian rhythm lead to insulin resistance (IR), diabetes mellitus, dyslipidaemia and cardiovascular comorbidities. As undifferentiated, self-renewing progenitors of adipocytes, mesenchymal stem cells (MSCs) may display the detrimental effects of excess GC, thus revealing a promising model to study the molecular mechanisms underlying the metabolic complications of CS. Methods: MSCs isolated from the abdominal skin of healthy subjects were treated thrice daily with GCs according to two different regimens: lower, circadian-decreasing (Lower, Decreasing Exposure, LDE) versus persistently higher doses (Higher, Constant Exposure, HCE), aimed at mimicking either the physiological condition or CS, respectively. Subsequently, MSCs were stimulated with insulin and glucose thrice daily, resembling food uptake and both glucose uptake/GLUT-4 translocation and the expression of LIPE, ATGL, IL-6 and TNF-α genes were analyzed at predefined timepoints over three days. Results: LDE to GCs did not impair glucose uptake by MSCs, whereas HCE significantly decreased glucose uptake by MSCs only when prolonged. Persistent signs of IR occurred after 30 hours of HCE to GCs. Compared to LDE, MSCs experiencing HCE to GCs showed a downregulation of lipolysis-related genes in the acute period, followed by overexpression once IR was established. Conclusions: Preserving circadian GC rhythmicity is crucial to prevent the occurrence of metabolic alterations. Similar to mature adipocytes, MSCs suffer from IR and impaired lipolysis due to chronic GC excess: MSCs could represent a reliable model to track the mechanisms involved in GC-induced IR throughout cellular differentiation.


Assuntos
Síndrome de Cushing , Resistência à Insulina , Células-Tronco Mesenquimais , Síndrome de Cushing/complicações , Glucocorticoides/metabolismo , Glucose/efeitos adversos , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipólise , Células-Tronco Mesenquimais/metabolismo , Erros Inatos do Metabolismo , Receptores de Glucocorticoides/deficiência
7.
Artigo em Inglês | MEDLINE | ID: mdl-33513921

RESUMO

Polydatin is a polyphenol, whose beneficial properties, including anti-inflammatory and antioxidant activity, have been largely demonstrated. At the same time, copper has an important role in the correct organism homeostasis and alteration of its concentration can induce oxidative stress. In this study, the efficacy of polydatin to counteract the stress induced by CuSO4 exposure or by caudal fin amputation was investigated in zebrafish larvae. The study revealed that polydatin can reduced the stress induced by a 2 h exposure to 10 µM CuSO4 by lowering the levels of il1b and cxcl8b.1 and reducing neutrophils migration in the head and along the lateral line. Similarly, polydatin administration reduced the number of neutrophils in the area of fin cut. In addition, polydatin upregulates the expression of sod1 mRNA and CAT activity, both involved in the antioxidant response. Most of the results obtained in this study support the working hypothesis that polydatin administration can modulate stress response and its action is more effective in mitigating the effects rather than in preventing chemical damages.


Assuntos
Estilbenos , Peixe-Zebra , Animais , Glucosídeos/farmacologia , Larva , Estresse Oxidativo , Estilbenos/farmacologia
8.
Inflamm Res ; 70(1): 79-87, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33210178

RESUMO

INTRODUCTION: Psoriasis cellular hallmarks, such as the imbalance between Th1/Th17 and Th2 cytokines and the dysregulated expression of vascular endothelial growth factor (VEGF), inducible nitric oxide synthase, (iNOS) and indoleamine 2,3-dioxygenase (IDO), are all detectable in mesenchymal stem cells (MSCs) suggesting that psoriasis originates at mesenchymal level. AIM OF THE STUDY: In this scenario, MSCs may become the new therapeutic target and interest in the effects of traditionally used drugs, such as Apremilast, on MSCs has greatly increased. MATERIALS AND METHODS: MSCs from control subjects (C-MSCs) and from psoriatic patients before (PsO MSCs T0) and after in vivo treatment with Apremilast (PsO-MSCs T12) were isolated and characterized; subsequently, the effects of Apremilast on VEGF, iNOS and IDO expression were evaluated by immunocytochemistry (ICC). The expression of VEGF, iNOS and IDO was also detected in skin sections by immunohistochemistry (IHC). RESULTS: The results indicate that in vivo administration of Apremilast is able to drive the altered profile of PsO-MSCs towards a more physiological pattern. In skin sections, the role of Apremilast is evident in reducing VEGF, iNOS and IDO expression. CONCLUSION: Apremilast treatment influences the expression of VEGF, iNOS and IDO not only by keratinocytes but also by MSCs, restoring their intrinsic profile and their natural anti-inflammatory action, and decreasing the auto-inflammatory process that underpins the development of psoriasis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Psoríase/imunologia , Talidomida/análogos & derivados , Adulto , Idoso , Anti-Inflamatórios não Esteroides/uso terapêutico , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Masculino , Células-Tronco Mesenquimais/imunologia , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/imunologia , Psoríase/tratamento farmacológico , Pele/efeitos dos fármacos , Pele/imunologia , Talidomida/farmacologia , Talidomida/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/imunologia
9.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143370

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by fibroblasts activation, ECM accumulation, and diffused alveolar inflammation. The role of inflammation in IPF is still controversial and its involvement may follow nontraditional mechanisms. It is seen that a pathological microenvironment may affect cells, in particular mesenchymal stem cells (MSCs) that may be able to sustain the inflamed microenvironment and influence the surrounding cells. Here MSCs have been isolated from fibrotic (IPF-MSCs) and control (C-MSCs) lung tissue; first cells were characterized and compared by the expression of molecules related to ECM, inflammation, and other interdependent pathways such as hypoxia and oxidative stress. Subsequently, MSCs were co-cultured between them and with NHLF to test the effects of the cellular crosstalk. Results showed that pathological microenvironment modified the features of MSCs: IPF-MSCs, compared to C-MSCs, express higher level of molecules related to ECM, inflammation, oxidative stress, and hypoxia; notably, when co-cultured with C-MSCs and NHLF, IPF-MSCs are able to induce a pathological phenotype on the surrounding cell types. In conclusion, in IPF the pathological microenvironment affects MSCs that in turn can modulate the behavior of other cell types favoring the progression of IPF.


Assuntos
Biomarcadores/metabolismo , Microambiente Celular , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/patologia , Inflamação/patologia , Pulmão/patologia , Células-Tronco Mesenquimais/patologia , Idoso , Biomarcadores/análise , Estudos de Casos e Controles , Proliferação de Células , Técnicas de Cocultura , Feminino , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA