Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 6(1): 572-582, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230368

RESUMO

The application of frontal polymerization to additive manufacturing has advantages in energy consumption and speed of printing. Additionally, with frontal polymerization, it is possible to print free-standing structures that require no supports. A resin was developed using a mixture of epoxies and vinyl ether with an iodonium salt and peroxide initiating system that frontally polymerizes through radical-induced cationic frontal polymerization. The formulation, which was optimized for reactivity, physical properties, and rheology, allowed the printing of free-standing structures. Increasing ratios of vinyl ether and reactive cycloaliphatic epoxide were found to increase the front velocity. Addition of carbon nanofibers increased the front velocity more than the addition of milled carbon fibers. The resin filled with carbon nanofibers and fumed silica exhibited shear-thinning behavior and was suitable for extrusion-based printing at a weight fraction of 4 wt %. A desktop 3D printer was modified to control resin extrusion and deposition with a digital syringe dispenser. Flexural properties of molded and 3D-printed specimens showed that specimens printed in the transverse direction exhibited the lowest strength, likely due to the presence of voids, adhesion issues between filaments, and preferential carbon nanofiber alignment along the filaments. Finally, free-standing printing of single, angled filaments and helical geometries was successfully demonstrated by coordinating ultraviolet-based reaction initiation, low air pressure for resin extrusion, and printing speed to match front velocity.

2.
Nanotechnology ; 34(14)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36623312

RESUMO

In this study, composite asymmetric membranes containing antimony (Sb) nanobelts are prepared via a straightforward phase inversion method in combination with post-pyrolysis treatment. Sb nanobelt asymmetric membranes demonstrate improved cyclability and specific capacity as the alloy anode of sodium ion battery compared to Sb nanobelt thin films without asymmetric porous structure. The unique structure can effectively accommodate the large volume expansion of Sb-based alloy anodes, prohibit the loss of fractured active materials, and aid in the formation of stable artificial solid electrolyte interphases as evidenced by an outstanding capacity retention of ∼98% in 130 cycles at 60 mA g-1. A specific capacity of ∼600 mAh g-1is obtained at 15 mA g-1(1/40C). When the current density is increased to 240 mA g-1, ∼80% capacity can be maintained (∼480 mAh g-1). The relations among phase inversion conditions, structures, compositions, and resultant electrochemical properties are revealed through comprehensive characterization.


Assuntos
Antimônio , Sódio , Íons , Ligas , Fontes de Energia Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA