Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genet Med ; 26(7): 101137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38814327

RESUMO

Carrier screening has historically assessed a relatively small number of autosomal recessive and X-linked conditions selected based on frequency in a specific subpopulation and association with severe morbidity or mortality. Advances in genomic technologies enable simultaneous screening of individuals for several conditions. The American College of Medical Genetics and Genomics recently published a clinical practice resource that presents a framework when offering screening for autosomal recessive and X-linked conditions during pregnancy and preconception and recommends a tier-based approach when considering the number of conditions to screen for and their frequency within the US population in general. This laboratory technical standard aims to complement the practice resource and to put forth considerations for clinical laboratories and clinicians who offer preconception/prenatal carrier screening.


Assuntos
Triagem de Portadores Genéticos , Testes Genéticos , Genética Médica , Genômica , Diagnóstico Pré-Natal , Humanos , Triagem de Portadores Genéticos/métodos , Triagem de Portadores Genéticos/normas , Gravidez , Feminino , Genômica/métodos , Genômica/normas , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/normas , Testes Genéticos/normas , Testes Genéticos/métodos , Genética Médica/normas , Estados Unidos , Cuidado Pré-Concepcional/métodos , Cuidado Pré-Concepcional/normas , Aconselhamento Genético/normas , Aconselhamento Genético/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38663031

RESUMO

Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.

3.
Genet Med ; 26(2): 101029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982373

RESUMO

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Assuntos
Testes Genéticos , Variação Genética , Humanos , Alelos , Bases de Dados Genéticas
4.
medRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066232

RESUMO

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.

5.
Genet Med ; 24(11): 2240-2248, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997716

RESUMO

PURPOSE: Postzygotic (somatic) variants in the mTOR pathway genes cause a spectrum of distinct developmental abnormalities. Accurate classification of somatic variants in this group of disorders is crucial for affected individuals and their families. METHODS: The ClinGen Brain Malformation Variant Curation Expert Panel was formed to curate somatic variants associated with developmental brain malformations. We selected the genes AKT3, MTOR, PIK3CA, and PIK3R2 as the first set of genes to provide additional specifications to the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) sequence variant interpretation guidelines, which currently focus solely on germline variants. RESULTS: A total of 24 of the original 28 ACMG/AMP criteria required modification. Several modifications used could be applied to other genes and disorders in which somatic variants play a role: 1) using variant allele fraction differences as evidence that somatic mutagenesis occurred as a proxy for de novo variation, 2) incorporating both somatic and germline evidence, and 3) delineating phenotype on the basis of variable tissue expression. CONCLUSION: We have established a framework for rigorous interpretation of somatic mosaic variants, addressing issues unique to somatic variants that will be applicable to many genes and conditions.


Assuntos
Encéfalo , Anormalidades Congênitas , Variação Genética , Genoma Humano , Humanos , Encéfalo/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Anormalidades Congênitas/genética , Testes Genéticos , Variação Genética/genética , Mutação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética
6.
Genet Med ; 24(7): 1392-1406, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35802133

RESUMO

Hearing loss is a common and complex condition that can occur at any age, can be inherited or acquired, and is associated with a remarkably wide array of etiologies. The diverse causes of hearing loss, combined with the highly variable and often overlapping presentations of different forms of hearing loss, challenge the ability of traditional clinical evaluations to arrive at an etiologic diagnosis for many deaf and hard-of-hearing individuals. However, identifying the etiology of hearing loss may affect clinical management, improve prognostic accuracy, and refine genetic counseling and assessment of the likelihood of recurrence for relatives of deaf and hard-of-hearing individuals. Linguistic and cultural identities associated with being deaf or hard-of-hearing can complicate access to and the effectiveness of clinical care. These concerns can be minimized when genetic and other health care services are provided in a linguistically and culturally sensitive manner. This clinical practice resource offers information about the frequency, causes, and presentations of hearing loss and suggests approaches to the clinical and genetic evaluation of deaf and hard-of-hearing individuals aimed at identifying an etiologic diagnosis and providing informative and effective patient education and genetic counseling.


Assuntos
Surdez , Genética Médica , Perda Auditiva , Surdez/diagnóstico , Surdez/genética , Aconselhamento Genético , Genômica , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Humanos , Estados Unidos
7.
Cell Genom ; 2(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35754516

RESUMO

The dilemma of how to categorize and classify diseases has been debated for centuries. The field of medical genetics has historically approached nosology based on clinical phenotypes observed in patients and families. Advances in genomic sequencing and understanding of genetic contributions to disease often provoke a need to reassess these classifications. The Clinical Genome Resource (ClinGen) has developed frameworks to classify the strength of evidence underlying monogenic gene-disease relationships, variant pathogenicity, and clinical actionability. It is therefore necessary to define the disease entity being evaluated, which can be challenging for genes associated with multiple conditions and/or a broad phenotypic spectrum. We therefore developed criteria to guide "lumping and splitting" decisions and improve consistency in defining monogenic gene-disease relationships. Here, we outline the precuration process, the lumping and splitting guidelines with examples, and describe the implications for clinical diagnosis, informatics, and care management.

8.
Genet Med ; 24(8): 1732-1742, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35507016

RESUMO

PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.


Assuntos
Bases de Dados Genéticas , Genômica , Testes Genéticos , Variação Genética , Humanos
9.
Genome Med ; 14(1): 6, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039090

RESUMO

BACKGROUND: Identification of clinically significant genetic alterations involved in human disease has been dramatically accelerated by developments in next-generation sequencing technologies. However, the infrastructure and accessible comprehensive curation tools necessary for analyzing an individual patient genome and interpreting genetic variants to inform healthcare management have been lacking. RESULTS: Here we present the ClinGen Variant Curation Interface (VCI), a global open-source variant classification platform for supporting the application of evidence criteria and classification of variants based on the ACMG/AMP variant classification guidelines. The VCI is among a suite of tools developed by the NIH-funded Clinical Genome Resource (ClinGen) Consortium and supports an FDA-recognized human variant curation process. Essential to this is the ability to enable collaboration and peer review across ClinGen Expert Panels supporting users in comprehensively identifying, annotating, and sharing relevant evidence while making variant pathogenicity assertions. To facilitate evidence-based improvements in human variant classification, the VCI is publicly available to the genomics community. Navigation workflows support users providing guidance to comprehensively apply the ACMG/AMP evidence criteria and document provenance for asserting variant classifications. CONCLUSIONS: The VCI offers a central platform for clinical variant classification that fills a gap in the learning healthcare system, facilitates widespread adoption of standards for clinical curation, and is available at https://curation.clinicalgenome.org.


Assuntos
Variação Genética , Genoma Humano , Humanos , Testes Genéticos , Genômica
10.
Hum Mutat ; 43(8): 1031-1040, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34694049

RESUMO

Understanding whether there is enough evidence to implicate a gene's role in a given disease, as well as the mechanisms by which variants in this gene might cause this disease, is essential to determine clinical relevance. The National Institutes of Health-funded Clinical Genome Resource (ClinGen) has developed evaluation frameworks to assess both the strength of evidence supporting a relationship between a gene and disease (gene-disease validity), and whether loss (haploinsufficiency) or gain (triplosensitivity) of individual genes or genomic regions is a mechanism for disease (dosage sensitivity). ClinGen actively applies these frameworks across multiple disease domains, and makes this information publicly available via its website (https://www.clinicalgenome.org/) for use in multiple applications, including clinical variant classification. Here, we describe how the results of these curation processes can be utilized to inform the appropriate application of pathogenicity criteria for both sequence and copy number variants, as well as to guide test development and inform genomic filtering pipelines.


Assuntos
Variação Genética , Genoma Humano , Variações do Número de Cópias de DNA , Testes Genéticos , Genômica/métodos , Humanos
11.
Genet Med ; 23(11): 2208-2212, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34230634

RESUMO

PURPOSE: The ClinGen Variant Curation Expert Panels (VCEPs) provide disease-specific rules for accurate variant interpretation. Using the hearing loss-specific American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, the Hearing Loss VCEP (HL VCEP) illustrates the utility of expert specifications in variant interpretation. METHODS: A total of 157 variants across nine HL genes, previously submitted to ClinVar, were curated by the HL VCEP. The curation process involved collecting published and unpublished data for each variant by biocurators, followed by bimonthly meetings of an expert curation subgroup that reviewed all evidence and applied the HL-specific ACMG/AMP guidelines to reach a final classification. RESULTS: Before expert curation, 75% (117/157) of variants had single or multiple variants of uncertain significance (VUS) submissions (17/157) or had conflicting interpretations in ClinVar (100/157). After applying the HL-specific ACMG/AMP guidelines, 24% (4/17) of VUS and 69% (69/100) of discordant variants were resolved into benign (B), likely benign (LB), likely pathogenic (LP), or pathogenic (P). Overall, 70% (109/157) variants had unambiguous classifications (B, LB, LP, P). We quantify the contribution of the HL-specified ACMG/AMP codes to variant classification. CONCLUSION: Expert specification and application of the HL-specific ACMG/AMP guidelines effectively resolved discordant interpretations in ClinVar. This study highlights the utility of ClinGen VCEPs in supporting more consistent clinical variant interpretation.


Assuntos
Genoma Humano , Perda Auditiva , Humanos , Testes Genéticos , Variação Genética/genética , Perda Auditiva/diagnóstico , Perda Auditiva/genética
12.
Genet Med ; 21(11): 2442-2452, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31160754

RESUMO

PURPOSE: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. METHODS: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. RESULTS: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. CONCLUSION: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance.


Assuntos
Conexinas/genética , Perda Auditiva/genética , Alelos , Estudos de Casos e Controles , Conexina 26/genética , Conexinas/metabolismo , Surdez/genética , Feminino , Perda Auditiva Neurossensorial/genética , Humanos , Masculino , Mutação , Polimorfismo de Nucleotídeo Único/genética
14.
Cell ; 177(3): 587-596.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002795

RESUMO

Severe obesity is a rapidly growing global health threat. Although often attributed to unhealthy lifestyle choices or environmental factors, obesity is known to be heritable and highly polygenic; the majority of inherited susceptibility is related to the cumulative effect of many common DNA variants. Here we derive and validate a new polygenic predictor comprised of 2.1 million common variants to quantify this susceptibility and test this predictor in more than 300,000 individuals ranging from middle age to birth. Among middle-aged adults, we observe a 13-kg gradient in weight and a 25-fold gradient in risk of severe obesity across polygenic score deciles. In a longitudinal birth cohort, we note minimal differences in birthweight across score deciles, but a significant gradient emerged in early childhood and reached 12 kg by 18 years of age. This new approach to quantify inherited susceptibility to obesity affords new opportunities for clinical prevention and mechanistic assessment.


Assuntos
Peso Corporal , Herança Multifatorial/genética , Obesidade/patologia , Adolescente , Índice de Massa Corporal , Criança , Bases de Dados Factuais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Risco , Índice de Gravidade de Doença
15.
Genet Med ; 21(10): 2239-2247, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894701

RESUMO

PURPOSE: Proper interpretation of genomic variants is critical to successful medical decision making based on genetic testing results. A fundamental prerequisite to accurate variant interpretation is the clear understanding of the clinical validity of gene-disease relationships. The Clinical Genome Resource (ClinGen) has developed a semiquantitative framework to assign clinical validity to gene-disease relationships. METHODS: The ClinGen Hearing Loss Gene Curation Expert Panel (HL GCEP) uses this framework to perform evidence-based curations of genes present on testing panels from 17 clinical laboratories in the Genetic Testing Registry. The HL GCEP curated and reviewed 142 genes and 164 gene-disease pairs, including 105 nonsyndromic and 59 syndromic forms of hearing loss. RESULTS: The final outcome included 82 Definitive (50%), 12 Strong (7%), 25 Moderate (15%), 32 Limited (20%), 10 Disputed (6%), and 3 Refuted (2%) classifications. The summary of each curation is date stamped with the HL GCEP approval, is live, and will be kept up-to-date on the ClinGen website ( https://search.clinicalgenome.org/kb/gene-validity ). CONCLUSION: This gene curation approach serves to optimize the clinical sensitivity of genetic testing while reducing the rate of uncertain or ambiguous test results caused by the interrogation of genes with insufficient evidence of a disease link.


Assuntos
Surdez/genética , Testes Genéticos/métodos , Perda Auditiva/genética , Curadoria de Dados/métodos , Bases de Dados Genéticas , Testes Genéticos/normas , Variação Genética , Genoma Humano , Genômica/métodos , Humanos , Mutação , Reprodutibilidade dos Testes
17.
Hum Mutat ; 39(11): 1593-1613, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311386

RESUMO

Due to the high genetic heterogeneity of hearing loss (HL), current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of HL. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants in HL genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP HL rules. Three rules remained unchanged, four rules were removed, and the remaining 21 rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and disease experts. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These HL-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with HL.


Assuntos
Testes Genéticos/métodos , Genoma Humano/genética , Perda Auditiva/genética , Frequência do Gene/genética , Variação Genética/genética , Genômica/métodos , Humanos , Mutação/genética , Análise de Sequência de DNA , Sociedades Médicas , Estados Unidos
18.
Hum Mutat ; 39(11): 1631-1640, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311388

RESUMO

Accurate and consistent variant classification is imperative for incorporation of rapidly developing sequencing technologies into genomic medicine for improved patient care. An essential requirement for achieving standardized and reliable variant interpretation is data sharing, facilitated by a centralized open-source database. Familial hypercholesterolemia (FH) is an exemplar of the utility of such a resource: it has a high incidence, a favorable prognosis with early intervention and treatment, and cascade screening can be offered to families if a causative variant is identified. ClinVar, an NCBI-funded resource, has become the primary repository for clinically relevant variants in Mendelian disease, including FH. Here, we present the concerted efforts made by the Clinical Genome Resource, through the FH Variant Curation Expert Panel and global FH community, to increase submission of FH-associated variants into ClinVar. Variant-level data was categorized by submitter, variant characteristics, classification method, and available supporting data. To further reform interpretation of FH-associated variants, areas for improvement in variant submissions were identified; these include a need for more detailed submissions and submission of supporting variant-level data, both retrospectively and prospectively. Collaborating to provide thorough, reliable evidence-based variant interpretation will ultimately improve the care of FH patients.


Assuntos
Genoma Humano/genética , Hiperlipoproteinemia Tipo II/genética , DNA/genética , Bases de Dados Genéticas , Variação Genética/genética , Genômica , Humanos
19.
Hum Mutat ; 39(11): 1517-1524, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30192042

RESUMO

The 2015 ACMG/AMP sequence variant interpretation guideline provided a framework for classifying variants based on several benign and pathogenic evidence criteria, including a pathogenic criterion (PVS1) for predicted loss of function variants. However, the guideline did not elaborate on specific considerations for the different types of loss of function variants, nor did it provide decision-making pathways assimilating information about variant type, its location, or any additional evidence for the likelihood of a true null effect. Furthermore, this guideline did not take into account the relative strengths for each evidence type and the final outcome of their combinations with respect to PVS1 strength. Finally, criteria specifying the genes for which PVS1 can be applied are still missing. Here, as part of the ClinGen Sequence Variant Interpretation (SVI) Workgroup's goal of refining ACMG/AMP criteria, we provide recommendations for applying the PVS1 criterion using detailed guidance addressing the above-mentioned gaps. Evaluation of the refined criterion by seven disease-specific groups using heterogeneous types of loss of function variants (n = 56) showed 89% agreement with the new recommendation, while discrepancies in six variants (11%) were appropriately due to disease-specific refinements. Our recommendations will facilitate consistent and accurate interpretation of predicted loss of function variants.


Assuntos
Genoma Humano/genética , Sociedades Médicas/normas , Biologia Computacional/métodos , Éxons/genética , Testes Genéticos/métodos , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Estados Unidos
20.
J Mol Diagn ; 20(6): 789-801, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30096381

RESUMO

Variant interpretation depends on accurate annotations using biologically relevant transcripts. We have developed a systematic strategy for designating primary transcripts and have applied it to 109 hearing loss-associated genes that were divided into three categories. Category 1 genes (n = 38) had a single transcript; category 2 genes (n = 33) had multiple transcripts, but a single transcript was sufficient to represent all exons; and category 3 genes (n = 38) had multiple transcripts with unique exons. Transcripts were curated with respect to gene expression reported in the literature and the Genotype-Tissue Expression Project. In addition, high-frequency loss-of-function variants in the Genome Aggregation Database and disease-causing variants in ClinVar and the Human Gene Mutation Database across the 109 genes were queried. These data were used to classify exons as clinically significant, insignificant, or of uncertain significance. Interestingly, 6% of all exons, containing 124 reportedly disease-causing variants, were of uncertain significance. Finally, we used exon-level next-generation sequencing quality metrics generated at two clinical laboratories and identified a total of 43 technically challenging exons in 20 different genes that had inadequate coverage and/or homology issues that might lead to false-variant calls. We have demonstrated that transcript analysis plays a critical role in accurate clinical variant interpretation.


Assuntos
Variação Genética , Éxons/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA