Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496494

RESUMO

Post-translational modifications (PTMs) of α-synuclein (α-syn) such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Previously, we reported that α-syn clusters synaptic vesicles (SV) 1, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering 2. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological condition and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn's N-terminus and increased intermolecular interactions on the LPC-containing membrane. Our work demonstrates that N-acetylation fine-tunes α-syn-LPC interaction for mediating α-syn's function in SV clustering.

2.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302992

RESUMO

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Células-Tronco Neoplásicas/patologia , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA
3.
Cell Rep ; 43(2): 113741, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38335092

RESUMO

Jiajie (JJ) Diao spoke with us at Cell Reports about his outlook on science, the value of collaboration, and his exciting work asking cell biology questions using biophysical approaches. Specifically, he discusses the recent study from his team where they discover that mitochondrial nucleoid condensates can remodel the mitochondrial membrane through high membrane curvature.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Masculino , Humanos , Biofísica
4.
Autophagy Rep ; 3(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344192

RESUMO

Macroautophagy (also known as autophagy) plays a pivotal role in maintaining cellular homeostasis. The terminal step of the multi-step autophagy degradation pathway involves fusion between the cargo-laden, double-membraned autophagosome and the lytic organelle lysosome/vacuole. Over the past decade, various core components of the molecular machinery that execute this critical terminal autophagy event have been identified. This review highlights recent advances in understanding the molecular structures, biochemical functions, and regulatory mechanisms of key components of this highly sophisticated machinery including the SNARE fusogens, tethering factors, Rab GTPases and associated guanine nucleotide exchange factors, and other accessory factors.

5.
Trends Analyt Chem ; 1692023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37928815

RESUMO

Structured illumination microscopy (SIM) is a super-resolution technology for imaging living cells and has been used for studying the dynamics of lysosomes and mitochondria. Recently, new probes and analyzing methods have been developed for SIM imaging, enabling the quantitative analysis of these subcellular structures and their interactions. This review provides an overview of the working principle and advances of SIM, as well as the organelle-targeting principles and types of fluorescence probes, including small molecules, metal complexes, nanoparticles, and fluorescent proteins. Additionally, quantitative methods based on organelle morphology and distribution are outlined. Finally, the review provides an outlook on the current challenges and future directions for improving the combination of SIM imaging and image analysis to further advance the study of organelles. We hope that this review will be useful for researchers working in the field of organelle research and help to facilitate the development of SIM imaging and analysis techniques.

6.
Cell Rep ; 42(12): 113472, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999975

RESUMO

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.


Assuntos
DNA Mitocondrial , Mitocôndrias , Mitocôndrias/genética , DNA Mitocondrial/genética , Membranas Mitocondriais , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais
7.
Proc Natl Acad Sci U S A ; 120(44): e2310174120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883437

RESUMO

α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Vesículas Sinápticas/metabolismo , Lisofosfatidilcolinas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosfolipídeos/metabolismo
8.
Eur Phys J E Soft Matter ; 46(10): 96, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823961

RESUMO

α-Synuclein (α-Syn) is an intrinsically disordered protein whose aggregation is associated with Parkinson's disease, dementia, and other neurodegenerative diseases known as synucleinopathies. However, the functional role of α-Syn is still unclear, although it has been shown to be involved in the regulation of neurotransmitter release via the interaction with synaptic vesicles (SVs), vesicle clustering, and SNARE complex assembly. Fatty acids have significant occupancy in synaptic vesicles; and recent studies suggest the interaction of fatty acids with α-Syn affect the formation of (pathological) aggregates, but it is less clear how fatty acids affects the functional role of α-Syn including α-Syn-membrane interactions, in particular with (SV-like) vesicles. Here, we report the concentration dependent effect of docosahexaenoic acid (DHA) in synaptic-like vesicle clustering via α-Syn interaction. Through molecular dynamics simulation, we revealed that DHA promoted vesicle clustering is due to the electrostatic interaction between DHA in the membrane and the N-terminal region of α-Syn. Moreover, this increased electrostatic interaction arises from a change in the macroscopic properties of the protein-membrane interface induced by (preferential solvation of) DHA. Our results provide insight as to how DHA regulates vesicle clustering mediated by α-Syn and may further be useful to understand its physiological as well as pathological role. Description: In physiological environments, α-Synuclein (α-Syn) localizes at nerve termini and synaptic vesicles and interacts with anionic phospholipid membranes to promote vesicle clustering. Docosahexaenoic acid (DHA) increases binding affinity between α-Syn and lipid membranes by increasing electrostatic interaction energy through modulating the local and global membrane environment and conformational properties of α-Syn.


Assuntos
Ácidos Docosa-Hexaenoicos , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Eletricidade Estática , Fosfolipídeos/química , Vesículas Sinápticas/metabolismo
9.
Chem Sci ; 14(37): 10236-10248, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772119

RESUMO

Detecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy. Given its sensitivity to mitochondrial membrane potential and affinity to DNA, PCV-1's ability to stain mitochondria and nucleoli was observed in live and dead cells, respectively. During cell injury induced by drug treatment, PCV-1's migration from mitochondria to the nucleolus was dynamically visualized at the single-cell level. By extension, harnessing PCV-1's excellent photostability and signal-to-noise ratio and by comparing the fluorescence intensity of the two organelles, mitochondria and nucleoli, we developed a powerful analytical assay named organelle ratiometric probing (ORP) that we applied to quantitatively analyze and efficiently assess the viability of individual cells, thereby enabling deeper insights into the potential mechanisms of cell death. In ORP analysis with PCV-1, we identified 0.3 as the cutoff point for assessing whether adding a given drug will cause apparent cytotoxicity, which greatly expands the probe's applicability. To the best of our knowledge, PCV-1 is the first probe to allow visualizing cell death and cell injury under super-resolution imaging, and our proposed analytical assay using it paves the way for quantifying cell viability at the single-cell level.

10.
Bioengineering (Basel) ; 10(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37627808

RESUMO

Biochips, a novel technology in the field of biomolecular analysis, offer a promising alternative to conventional testing equipment. These chips integrate multiple functions within a single system, providing a compact and efficient solution for various testing needs. For biochips, a pattern-control micro-electrode-dot-array (MEDA) is a new, universally viable design that can replace microchannels and other micro-components. In a Micro Electrode Dot Array (MEDA), each electrode can be programmatically controlled or dynamically grouped, allowing a single chip to fulfill the diverse requirements of different tests. This capability not only enhances flexibility, but also contributes to cost reduction by eliminating the need for multiple specialized chips. In this paper, we present a visible biochip testing system for tracking the entire testing process in real time, and describe our application of the system to detect SARS-CoV-2.

11.
Biosens Bioelectron ; 239: 115604, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607448

RESUMO

Two-photon absorbing fluorescent probes have emerged as powerful imaging tools for subcellular-level monitoring of biological substances and processes, offering advantages such as deep light penetration, minimal photodamage, low autofluorescence, and high spatial resolution. However, existing two-photon absorbing probes still face several limitations, such as small two-photon absorption cross-section, poor water solubility, low membrane permeability, and potentially high toxicity. Herein, we report three small-molecule probes, namely MSP-1arm, Lyso-2arm, and Mito-3arm, composed of a pyridinium center (electron-acceptor) and various methoxystyrene "arms" (electron-donor). These probes exhibit excellent fluorescence quantum yield and decent aqueous solubility. Leveraging the inherent intramolecular charge transfer and excitonic coupling effect, these complexes demonstrate excellent two-photon absorption in the near-infrared region. Notably, Lyso-2arm and Mito-3arm exhibit distinct targeting abilities for lysosomes and mitochondria, respectively. In two-photon microscopy experiments, Mito-3arm outperforms a commercial two-photon absorbing dye in 2D monolayer HeLa cells, delivering enhanced resolution, broader NIR light excitation window, and higher signal-to-noise ratio. Moreover, the two-photon bioimaging of 3D human forebrain organoids confirms the successful deep tissue imaging capabilities of both Lyso-2arm and Mito-3arm. Overall, this work presents a rational design strategy in developing competent two-photon-absorbing probes by varying the number of conjugated "arms" for bioimaging applications.


Assuntos
Técnicas Biossensoriais , Microscopia , Humanos , Corantes Fluorescentes , Células HeLa , Permeabilidade da Membrana Celular , Mitomicina
12.
Nat Chem Biol ; 19(12): 1434-1435, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37322155
13.
Adv Drug Deliv Rev ; 199: 114978, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385544

RESUMO

Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.

14.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37163053

RESUMO

Detecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy. Given its sensitivity to mitochondrial membrane potential and affinity to DNA, PCV-1's ability to stain mitochondria and nucleoli was observed in live and dead cells, respectively. During cell injury induced by drug treatment, PCV-1's migration from mitochondria to the nucleolus was dynamically visualized at the single-cell level. By extension, harnessing PCV-1's excellent photostability and signal-to-noise ratio and by comparing the fluorescence intensity of the two organelles, mitochondria and nucleoli, we developed a powerful analytical assay named organelle ratiometric probing (ORP) that we applied to quantitatively analyze and efficiently assess the viability of individual cells, thereby enabling deeper insights into the potential mechanisms of cell death. In ORP analysis with PCV-1, we identified 0.3 as the cutoff point for assessing whether adding a given drug will cause apparent cytotoxicity, which greatly expands the probe's applicability. To the best of our knowledge, PCV-1 is the first probe to allow visualizing cell death and cell injury under super-resolution imaging, and our proposed analytical assay using it paves the way for quantifying cell viability at the single-cell level.

15.
ACS Sens ; 8(5): 2068-2078, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37141429

RESUMO

Endolysosome dynamics plays an important role in autophagosome biogenesis. Hence, imaging the subcellular dynamics of endolysosomes using high-resolution fluorescent imaging techniques would deepen our understanding of autophagy and benefit the development of pharmaceuticals against endosome-related diseases. Taking advantage of the intramolecular charge-transfer mechanism, herein we report a cationic quinolinium-based fluorescent probe (PyQPMe) that exhibits excellent pH-sensitive fluorescence in endolysosomes at different stages of interest. A systematic photophysical and computational study on PyQPMe was carried out to rationalize its highly pH-dependent absorption and emission spectra. The large Stokes shift and strong fluorescence intensity of PyQPMe can effectively reduce the background noise caused by excitation light and microenvironments and provide a high signal-to-noise ratio for high-resolution imaging of endolysosomes. By applying PyQPMe as a small molecular probe in live cells, we were able to reveal a constant conversion rate from early endosomes to late endosomes/lysosomes during autophagy at the submicron level.


Assuntos
Corantes Fluorescentes , Lisossomos , Endossomos , Sondas Moleculares , Concentração de Íons de Hidrogênio
16.
J Mol Biol ; 435(13): 168089, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030649

RESUMO

SNARE is the essential mediator of membrane fusion that highly relies on the molecular structure of SNAREs. For instance, the protein syntaxin-1 involved in neuronal SNAREs, has a single transmembrane domain (sTMD) leading to fast fusion, while the syntaxin 17 has a V-shape double TMDs (dTMDs), taking part in the autophagosome maturation. However, it is not clear how the TMD structure influences the fusion process. Here, we demonstrate that the dTMDs significantly reduce fusion rate compared with the sTMD by using an in vitro reconstitution system. Through theoretical analysis, we reveal that the V-shape dTMDs can significantly increase protein-lipid mismatch, thereby raising the energy barrier of the fusion, and that increasing the number of SNAREs can reduce the energy barrier or protein-lipid mismatch. This study provides a physicochemical mechanistic understanding of SNARE-regulated membrane fusion.


Assuntos
Fusão de Membrana , Proteínas SNARE , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Domínios Proteicos , Mutação , Lipídeos
17.
ACS Nano ; 17(5): 4716-4728, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36848459

RESUMO

With the progression of nanotechnology, a growing number of nanomaterials have been created and incorporated into organisms and ecosystems, which raises significant concern about potential hazards of these materials on human health, wildlife, and the environment. Two-dimensional (2D) nanomaterials are one type of nanomaterials with thicknesses ranging from that of a single atom or of several atoms and have been proposed for a variety of biomedical applications such as drug delivery and gene therapy, but the toxicity thereof on subcellular organelles remains to be studied. In this work, we studied the impact of two typical 2D nanomaterials, MoS2 and BN nanosheets, on mitochondria, which are a type of membranous subcellular organelle that provides energy to cells. While 2D nanomaterials at a low dose exhibited a negligible cell mortality rate, significant mitochondrial fragmentation and partially reduced mitochondrial functions occurred; cells initiate mitophagy in response to mitochondrial damages, which cleans damaged mitochondria to avoid damage accumulation. Moreover, the molecular dynamics simulation results revealed that both MoS2 and BN nanosheets can spontaneously penetrate the mitochondrial lipid membrane through the hydrophobic interaction. The membrane penetration induced heterogeneous lipid packing resulting in damages. Our results demonstrate that even at a low dose 2D nanomaterials can physically damage mitochondria by penetrating the membrane, which draws attention to carefully evaluating the cytotoxicity of 2D nanomaterials for the potential biomedical application.


Assuntos
Molibdênio , Nanoestruturas , Humanos , Molibdênio/toxicidade , Molibdênio/química , Ecossistema , Mitofagia , Mitocôndrias , Nanoestruturas/química , Lipídeos
19.
Biomaterials ; 292: 121929, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455487

RESUMO

The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a "reserve-release" mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.


Assuntos
Autofagia , Retículo Endoplasmático , Estresse do Retículo Endoplasmático
20.
J Phys Chem B ; 126(48): 10045-10054, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36417323

RESUMO

Despite recent experiments and simulations suggesting that small-molecule inhibitors and some post-translational modifications (e.g., glycosylation and ubiquitination) can suppress the pathogenic aggregation of proteins due to steric hindrance, the effect of steric hindrance on amyloid formation has not been systematically studied. Based on Monte Carlo simulations using a coarse-grained model for amyloidogenic proteins and a hard sphere acting as steric hindrance, we investigated how steric hindrance on proteins could affect amyloid formation, particularly two steps of primary nucleation, namely, oligomerization and conformational conversion into a ß-sheet-enriched nucleus. We found that steric spheres played an inhibitory role in oligomerization with the effect proportional to the sphere radius RS, which we attributed to the decline in the nonspecific attractions between proteins. During the second step, small steric spheres facilitated the conformational conversion of proteins while large ones suppressed the conversion. The overall steric effect on amyloid nucleation was inhibitory regardless of RS. As RS increased, oligomeric assemblies changed from amorphous into sheet-like, structurally ordered species, reminiscent of the structure of amyloid fibrils. The oligomers with large RS were off-pathway with their ordered structures induced by the competition between steric hindrance and nonspecific attractions of soluble proteins. Interestingly, the equimolar mixture of proteins with and without steric hindrance amplified the sterically inhibitory effect by increasing the energy barrier of protein's conformational conversion. The physical mechanisms and biological implications of the above results are discussed. Our findings improve the current understanding of how nature regulates protein aggregation and amyloid formation by steric hindrance.


Assuntos
Proteínas Amiloidogênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA