Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 13: 13-18, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28352557

RESUMO

This study attempts to investigate the effect of phenol on physicochemical properties and treatment performances of partial nitrifying granules (PNGs). Two sequencing batch reactors (SBRs) fed with synthetic ammonium wastewaters were operated in absence (R1) or presence (R2) of phenol. The PNGs in R1 maintained excellent partial nitrification performance and relatively stable physicochemical properties, and exhibited compact and regular shaped structure with a cocci-dominant surface. However, as phenol concentration was stepwise increased from 0 to 300 mg/L in R2, filamentous bacteria appeared and gradually dominated within granules, which in turn resulted in settleability deterioration. Most notably, granules in R2 got easier to agglomerate in the reactor walls and then been washed out with effluent, leading to significant biomass loss, frequent outflow pipe blockage, and eventual system failure. The extracellular polymeric substances (EPS) contents including proteins and polysaccharides in R2 reached 1.8 and 1.7 times of that in R1, respectively, indicating that the presence of phenol played an important role on EPS production. Removal efficiency of ammonium and phenol remained high, but dropped sharply when phenol concentration reached 300 mg/L. Moreover, the failed maintenance of partial nitrification was observed due to the revival of nitrite oxidizing bacteria (NOB) within granules after phenol exposure, which was confirmed by quantitative fluorescence in situ hybridization (FISH) analysis. Overall this study demonstrates that phenol had negative effects on PNGs, and pretreatment to eliminate phenolic substances is recommended when using PNGs for wastewater treatment.

2.
Bioresour Technol ; 110: 105-10, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22330589

RESUMO

One of the main challenging issues for aerobic nitrifying granules in treating high strength ammonia wastewater is the long granulation time required for activated sludge to transform into aerobic granules. The present study provides a novel strategy for enhancing aerobic nitrifying granulation by applying an intensity of 48.0mT static magnetic field. The element analysis showed that the applied magnetic field could promote the accumulation of iron compounds in the sludge. And then the aggregation of iron decreased the full granulation time from 41 to 25days by enhancing the setting properties of granules and stimulating the secretion of extracellular polymeric substances (EPS). Long-term, cycle experiments and fluorescence in-situ hybridization (FISH) analysis proved that an intensity of 48.0mT magnetic field could enhance the activities and growth of nitrite-oxidizing bacteria (NOB). These findings suggest that magnetic field is helpful and reliable for accelerating the aerobic nitrifying granulation.


Assuntos
Magnetismo , Nitrificação , Aerobiose , Hibridização in Situ Fluorescente , Espectrometria de Fluorescência
3.
J Hazard Mater ; 191(1-3): 103-9, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21570181

RESUMO

This paper examines the simultaneous sorption and biodegradation performance of tetracycline (TC) by the nitrifying granular sludge as well as the short-term exposure toxicity of TC. The removal of TC was characterized by a quick sorption and a slow process of biodegradation. The adsorption process fits pseudo-second-order kinetic model, with a complex mechanism of surface adsorption and intra-particle diffusion. Both temperature and mixed liquor suspended solid (MLSS) influenced TC sorption to the granules. TC biodegradation was enhanced with the increase of COD and NH(4)(+)-N concentrations, with except of the NH(4)(+)-N concentrations higher than 150 mg/L. With the ATU addition, TC degradation was weakened remarkably, indicating a synergistic effect of multiple microbes. Results of the short-term exposure (12h) effects showed that the respirometric activities of the microbes decreased greatly. The addition of TC also decreased the rate of NH(4)(+)-N utilization considerably, with the half saturation constant (K(s)) increasing from 297.7 to 347.2 mg/L.


Assuntos
Biodegradação Ambiental , Tetraciclina/metabolismo , Adsorção , Nitrificação , Temperatura , Tetraciclina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA