RESUMO
Lymphangioleiomyomatosis (LAM) is a rare, low-grade metastasizing disease characterized by cystic lung destruction. LAM can exhibit extensive heterogeneity at the molecular, cellular, and tissue levels. However, the molecular similarities and differences among LAM cells and tissue, and their connection to cancer features are not fully understood. By integrating complementary gene and protein LAM signatures, and single-cell and bulk tissue transcriptome profiles, we show sources of disease heterogeneity, and how they correspond to cancer molecular portraits. Subsets of LAM diseased cells differ with respect to gene expression profiles related to hormones, metabolism, proliferation, and stemness. Phenotypic diseased cell differences are identified by evaluating lumican (LUM) proteoglycan and YB1 transcription factor expression in LAM lung lesions. The RUNX1 and IRF1 transcription factors are predicted to regulate LAM cell signatures, and both regulators are expressed in LAM lung lesions, with differences between spindle-like and epithelioid LAM cells. The cancer single-cell transcriptome profiles most similar to those of LAM cells include a breast cancer mesenchymal cell model and lines derived from pleural mesotheliomas. Heterogeneity is also found in LAM lung tissue, where it is mainly determined by immune system factors. Variable expression of the multifunctional innate immunity protein LCN2 is linked to disease heterogeneity. This protein is found to be more abundant in blood plasma from LAM patients than from healthy women. IMPLICATIONS: This study identifies LAM molecular and cellular features, master regulators, cancer similarities, and potential causes of disease heterogeneity.
Assuntos
Biomarcadores Tumorais/metabolismo , Linfangioleiomiomatose/genética , Transcriptoma/genética , Feminino , HumanosRESUMO
Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune cell surface receptor that regulates microglial function and is involved in the pathophysiology of several neurodegenerative diseases. Its soluble form (sTREM2) results from shedding of the TREM2 ectodomain. The role of TREM2 in prion diseases, a group of rapidly progressive dementias remains to be elucidated. In the present study, we analysed the expression of TREM2 and its main sheddase ADAM10 in the brain of sporadic Creutzfeldt-Jakob disease (sCJD) patients and evaluated the role of CSF and plasma sTREM2 as a potential diagnostic marker of prion disease. Our data indicate that, compared to controls, TREM2 is increased in sCJD patient brains at the mRNA and protein levels in a regional and subtype dependent fashion, and expressed in a subpopulation of microglia. In contrast, ADAM10 is increased at the protein, but not the mRNA level, with a restricted neuronal expression. Elevated CSF sTREM2 is found in sCJD, genetic CJD with mutations E200K and V210I in the prion protein gene (PRNP), and iatrogenic CJD, as compared to healthy controls (HC) (AUC = 0.78-0.90) and neurological controls (AUC = 0.73-0.85), while CSF sTREM2 is unchanged in fatal familial insomnia. sTREM2 in the CSF of cases with Alzheimer's disease, and multiple sclerosis was not significantly altered in our series. CSF sTREM2 concentrations in sCJD are PRNP codon 129 and subtype-related, correlate with CSF 14-3-3 positivity, total-tau and YKL-40, and increase with disease progression. In plasma, sTREM2 is increased in sCJD compared with HC (AUC = 0.80), displaying positive correlations with plasma total-tau, neurofilament light, and YKL-40. We conclude that comparative study of TREM2 in brain and biological fluids of prion diseases reveals TREM2 to be altered in human prion diseases with a potential value in target engagement, patient stratification, and disease monitoring.
Assuntos
Proteína ADAM10 , Encéfalo , Glicoproteínas de Membrana , Doenças Priônicas , Receptores Imunológicos , Proteína ADAM10/sangue , Proteína ADAM10/líquido cefalorraquidiano , Proteína ADAM10/metabolismo , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/líquido cefalorraquidiano , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Proteínas Priônicas/metabolismo , Receptores Imunológicos/sangue , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismoRESUMO
Progressive motor alterations and selective death of striatal medium spiny neurons (MSNs) are key pathological hallmarks of Huntington's disease (HD), a neurodegenerative condition caused by a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene. Most research has focused on the pathogenic effects of the resultant protein product(s); however, growing evidence indicates that expanded CAG repeats within mutant HTT mRNA and derived small CAG repeat RNAs (sCAG) participate in HD pathophysiology. The individual contribution of protein versus RNA toxicity to HD pathophysiology remains largely uncharacterized and the role of other classes of small RNAs (sRNA) that are strongly perturbed in HD is uncertain. Here, we demonstrate that sRNA produced in the putamen of HD patients (HD-sRNA-PT) are sufficient to induce HD pathology in vivo. Mice injected with HD-sRNA-PT show motor abnormalities, decreased levels of striatal HD-related proteins, disruption of the indirect pathway, and strong transcriptional abnormalities, paralleling human HD pathology. Importantly, we show that the specific blockage of sCAG mitigates HD-sRNA-PT neurotoxicity only to a limited extent. This observation prompted us to identify other sRNA species enriched in HD putamen with neurotoxic potential. We detected high levels of tRNA fragments (tRFs) in HD putamen, and we validated the neurotoxic potential of an Alanine derived tRF in vitro. These results highlight that HD-sRNA-PT are neurotoxic, and suggest that multiple sRNA species contribute to striatal dysfunction and general transcriptomic changes, favoring therapeutic strategies based on the blockage of sRNA-mediated toxicity.
Assuntos
Encéfalo/patologia , Doença de Huntington , Pequeno RNA não Traduzido/farmacologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Expansão das Repetições de TrinucleotídeosRESUMO
BACKGROUND: Differential diagnosis of neurodegenerative dementia is currently supported by biomarkers including cerebrospinal fluid (CSF) tests. Among them, CSF total-tau (t-tau), phosphorylated tau (p-tau) and ß-amyloid42 (Aß42) are considered core biomarkers of neurodegeneration. In the present work, we hypothesize that simultaneous assessment of these biomarkers together with CSF α-synuclein (α-syn) will significantly improve the differential diagnostic of Alzheimer's disease and other dementias. To that aim, we characterized the analytical and clinical performance of a new tetra-plex immunoassay that simultaneously quantifies CSF Aß42, t-tau, p-tau and α-syn in the differential diagnosis of neurodegenerative dementia. METHODS: Biomarkers' concentrations were measured in neurological controls (n = 38), Alzheimer's disease (n = 35), Creutzfeldt-Jakob disease (n = 37), vascular dementia (n = 28), dementia with Lewy bodies/Parkinson's disease dementia (n = 27) and frontotemporal dementia (n = 34) using the new tetra-plex assay and established single-plex assays. Biomarker's performance was evaluated and diagnostic accuracy in the discrimination of diagnostic groups was determined using partial least squares discriminant analysis. RESULTS: The tetra-plex assay presented accuracies similar to individual single-plex assays with acceptable analytical performance. Significant correlations were observed between tetra-plex and single-plex assays. Using partial least squares discriminant analysis, Alzheimer's disease and Creutzfeldt-Jakob disease were well differentiated, reaching high accuracies in the discrimination from the rest of diagnostic groups. CONCLUSIONS: The new tetra-plex assay coupled with multivariate analytical approaches becomes a valuable asset for the differential diagnosis of neurodegenerative dementia and related applications.
Assuntos
Doença de Alzheimer , alfa-Sinucleína , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Diagnóstico Diferencial , Humanos , Fragmentos de Peptídeos , Proteínas tauRESUMO
The clinical diagnosis of vascular dementia (VaD) is based on imaging criteria, and specific biochemical markers are not available. Here, we investigated the potential of cerebrospinal fluid (CSF) lipocalin 2 (LCN2), a secreted glycoprotein that has been suggested as mediating neuronal damage in vascular brain injuries. The study included four independent cohorts with a total n = 472 samples. LCN2 was significantly elevated in VaD compared to controls, Alzheimer's disease (AD), other neurodegenerative dementias, and cognitively unimpaired patients with cerebrovascular disease. LCN2 discriminated VaD from AD without coexisting VaD with high accuracy. The main findings were consistent over all cohorts. Neuropathology disclosed a high percentage of macrophages linked to subacute infarcts, reactive astrocytes, and damaged blood vessels in multi-infarct dementia when compared to AD. We conclude that CSF LCN2 is a promising candidate biochemical marker in the differential diagnosis of VaD and neurodegenerative dementias.
Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Transtornos Cerebrovasculares/diagnóstico , Demência Vascular/diagnóstico , Lipocalina-2/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: To investigate whether cerebrospinal fluid (CSF) neurogranin concentrations are altered in sporadic Creutzfeldt-Jakob disease (CJD), comparatively with Alzheimer's disease (AD), and associated with neuronal degeneration in brain tissue. METHODS: CSF neurogranin, total tau, neurofilament light (NFL) and 14-3-3 protein were measured in neurological controls (NCs, n=64), AD (n=46) and CJD (n=81). The accuracy of neurogranin discriminating the three diagnostic groups was evaluated. Correlations between neurogranin and neurodegeneration biomarkers, demographic, genetic and clinical data were assessed. Additionally, neurogranin expression in postmortem brain tissue was studied. RESULTS: Compared with NC, CSF neurogranin concentrations were increased in CJD (4.75 times of NC; p<0.001, area under curve (AUC), 0.96 (95% CI 0.93 to 0.99) and AD (1.94 times of NC; p<0.01, AUC 0.73, 95% CI 0.62 to 0.82), and were able to differentiate CJD from AD (p<0.001, AUC 0.85, 95% CI 0.78 to 0.92). CSF tau was increased in CJD (41 times of NC) and in AD (3.1 times of NC), both at p<0.001. In CJD, neurogranin positively correlated with tau (r=0.55, p<0.001) and was higher in 14-3-3-positivity (p<0.05), but showed no association with NFL (r=0.08, p=0.46). CJD-MM1/MV1 cases displayed higher neurogranin levels than VV2 cases. Neurogranin was increased at early CJD disease stages and was a good prognostic marker of survival time in CJD. In brain tissue, neurogranin was detected in the cytoplasm, membrane and postsynaptic density fractions of neurons, with reduced levels in AD, and more significantly in CJD, where they correlated with synaptic and axonal markers. CONCLUSIONS: Neurogranin is a new biomarker of prion pathogenesis with diagnostic and prognostic abilities, which reflects the degree of neuronal damage in brain tissue in a CJD subtype manner.
Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Proteínas 14-3-3/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Estudos de Casos e Controles , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patologia , Feminino , Humanos , Masculino , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidianoRESUMO
Proteinase K-resistant prion protein (PrPRes ) nuclear and perinuclear immunoreactivity in oligodendrocytes of the frontal cortex is found in one case of otherwise typical sporadic Creutzfeldt-Jakob disease (sCJD) type VV2a. The PrP nature of the inclusions is validated with several anti-PrP antibodies directed to amino acids 130-160 (12F10), 109-112 (3F4), 97-102 (8G8) and the octarepeat region (amino acids 59-89: SAF32). Cellular identification and subcellular localization were evaluated with double- and triple-labeling immunofluorescence and confocal microscopy using antibodies against PrP, glial markers, and histone H3. Based on review of the literature and our own experience, this is a very odd situation that deserves further validation in other cases.
Assuntos
Síndrome de Creutzfeldt-Jakob/patologia , Corpos de Inclusão/patologia , Neuroglia/patologia , Proteínas Priônicas/metabolismo , Idoso , Síndrome de Creutzfeldt-Jakob/metabolismo , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Humanos , Imuno-Histoquímica , Masculino , Neuroglia/metabolismoRESUMO
Glutamate transporter solute carrier family 1, member 2 (GLT1/EAAT2), a major modulator of glutamate homeostasis in astrocytes, is assessed in post-mortem human brain samples of frontal cortex area 8 in advanced stages of Alzheimer disease (AD) and terminal stages of dementia with Lewy bodies (DLB) in order to gain understanding of astrogliopathy in diseases manifested by dementia. Glial fibrillary acidic protein (GFAP) mRNA expression is significantly increased in AD but not in DLB, whereas GLT1, vesicular glutamate transporter 1 (vGLUT1) and aldehyde dehydrogenase 1 family member 1 (ALDH1L1) are not modified in AD and DLB when compared with controls. GLT1 protein levels are not altered in AD and DLB but GFAP and ALDH1L1 are significantly increased in AD, and GFAP in DLB. As a result, a non-significant decrease in the ratio between GLT1 and GFAP, and between GLT1 and ALDH1L1, is found in both AD and DLB. Double-labeling immunofluorescence and confocal microscopy revealed no visible reduction of GLT1 immunoreactivity in relation to ß-amyloid plaques in AD. These data suggest a subtle imbalance between GLT1, and GFAP and ALDH1L1 expression, with limited consequences in glutamate transport.
RESUMO
INTRODUCTION: Neurofilament light (NFL) levels in the cerebrospinal fluid are increased in several neurodegenerative dementias. However, their diagnostic accuracy in the differential diagnostic context is unknown. METHODS: Cerebrospinal fluid NFL levels were quantified in nonprimarily neurodegenerative neurological and psychiatric diseases (n = 122), mild cognitive impairment (n = 48), Alzheimer's disease (n = 108), dementia with Lewy bodies/Parkinson's disease dementia (n = 53), vascular dementia (n = 46), frontotemporal dementia (n = 41), sporadic Creutzfeldt-Jakob disease (sCJD, n = 132), and genetic prion diseases (n = 182). RESULTS: The highest NFL levels were detected in sCJD, followed by vascular dementia, frontotemporal dementia, dementia with Lewy bodies/Parkinson's disease dementia, Alzheimer's disease, and mild cognitive impairment. In sCJD, NFL levels correlated with cerebrospinal fluid tau and disease duration. NFL levels were able to differentiate sCJD from nonprimarily neurodegenerative neurological and psychiatric diseases (area under the curve = 0.99, 95% confidence interval: 0.99-1) and from the other diagnostic groups showing cognitive impairment/dementia of a non-CJD etiology (area under the curve = 0.90, 95% confidence interval: 0.87-0.92). Compared to nonprimarily neurodegenerative neurological and psychiatric diseases, NFL was also elevated in genetic prion diseases associated with the E200K, V210I, P102L, and D178N prion protein gene mutations. DISCUSSION: Increased NFL levels are a common feature in neurodegenerative dementias.
Assuntos
Demência/líquido cefalorraquidiano , Doenças Priônicas/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/diagnóstico , Demência/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Priônicas/diagnósticoRESUMO
Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.
Assuntos
Síndrome de Creutzfeldt-Jakob/classificação , Síndrome de Creutzfeldt-Jakob/genética , MicroRNAs/genética , Interferência de RNA , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Síndrome de Creutzfeldt-Jakob/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/biossíntese , Pessoa de Meia-IdadeRESUMO
Remyelination occurs in demyelinated lesions in multiple sclerosis (MS) and pharmacological treatments that enhance this process will critically impact the long term functional outcome in the disease. Sildenafil, a cyclic GMP (cGMP)-specific phosphodiesterase 5 inhibitor (PDE5-I), is an oral vasodilator drug extensively used in humans for treatment of erectile dysfunction and pulmonary arterial hypertension. PDE5 is expressed in central nervous system (CNS) neuronal and glial populations and in endothelial cells and numerous studies in rodent models of neurological disease have evidenced the neuroprotective potential of PDE5-Is. Using myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) as a MS model, we previously showed that daily administration of sildenafil starting at peak disease rapidly ameliorates clinical symptoms while administration at symptoms onset prevents disease progression. These beneficial effects of the drug involved down-regulation of adaptive and innate immune responses, protection of axons and oligodendrocytes (OLs) and promotion of remyelination. In this work we have investigated mechanisms involved in the remyelinating effect of sildenafil. Using demyelinated organotypic cerebellar slice cultures we demonstrate that sildenafil stimulates remyelination by direct effects on CNS cells in a nitric oxide (NO)-cGMP-protein kinase G (PKG)-dependent manner. We also show that sildenafil treatment enhances OL maturation and induces expression of the promyelinating factor ciliary neurotrophic factor (CNTF) in spinal cord of EAE mice and in cerebellar slice cultures. Furthermore, we demonstrate that sildenafil promotes a M2 phenotype in bone marrow derived macrophages (BMDM) and increases myelin phagocytosis in these cells and in M2 microglia/macrophages in the spinal cord of EAE mice. Taken together these data indicate that promotion of OL maturation directly or through induction of growth factor expression, regulation of microglia/macrophage inflammatory phenotype and clearance of myelin debris may be relevant mechanisms involved in sildenafil enhancement of remyelination in demyelinated tissue and further support the contention that this well tolerated drug could be useful for ameliorating MS pathology.
Assuntos
Encefalomielite Autoimune Experimental/patologia , Oligodendroglia/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Remielinização/efeitos dos fármacos , Citrato de Sildenafila/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Feminino , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologiaRESUMO
BACKGROUND: YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. METHODS: In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. RESULTS: YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around ß-amyloid plaques, and surrounding vessels with ß-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. CONCLUSIONS: Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.