RESUMO
Mild traumatic brain injury (mTBI) is the most prevalent type of TBI (80-90%). It is characterized by a loss consciousness for less than 30 minutes, post-traumatic amnesia for less than 24 hours, and Glasgow Coma Score of 13-15. Accurately diagnosing mTBIs can be a challenge because the majority of these injuries do not show noticeable or visible changes on neuroimaging studies. Appropriate determination of mTBI is tremendously important because it might lead in some cases to post-concussion syndrome, cognitive impairments including attention, memory, and speed of information processing problems. The scientists have studied different methods to improve mTBI diagnosis and enhanced approaches that would accurately determine the severity of the trauma. The present review focuses on discussing the role of biomarkers as potential key factors in diagnosing mTBI. The present review focuses on 1) protein based peripheral and CNS markers, 2) genetic biomarkers, 3) imaging biomarkers, 4) neurophysiological biomarkers, and 5) clinical trials in mTBI. Each section provides information and characteristics on different biomarkers for mTBI.
Assuntos
Concussão Encefálica , Disfunção Cognitiva , Síndrome Pós-Concussão , Biomarcadores , Concussão Encefálica/diagnóstico por imagem , Humanos , PrognósticoRESUMO
ABSTRACT: The present study is aimed to identify the effect of gratitude as an adaptive regulating mechanism from suicidal ideation (SI) for veterans with mental illness (study 1) and student veterans with posttraumatic stress disorder (PTSD) symptoms (study 2) in the United States. Descriptive statistics and regression analyses were used to examine sociodemographic characteristics and relationships between gratitude and SI. Our study 1 consisted of 156 veterans with mental illness. The mean age for study 1 was 37.85. Our study 2 consisted of 232 student veterans with PTSD symptoms. The mean age for study 2 was 28.43. Higher gratitude scores in study 1 and study 2 were significantly associated with lower SI scores after adjusting for demographics and depression. This study partially supports the association between gratitude and SI in veterans with mental illness. Based on the results from this study, gratitude interventions may be effective in reducing SI when working with veterans with mental illness.
Assuntos
Emoções/fisiologia , Transtornos de Estresse Pós-Traumáticos , Estudantes , Ideação Suicida , Veteranos , Adulto , Feminino , Humanos , Relações Interpessoais , Masculino , Pessoa de Meia-Idade , Resiliência Psicológica , Estados Unidos , Adulto JovemRESUMO
Pediatric obesity and Attention Deficit Hyperactivity Disorder (ADHD) are rising health concerns in the United States, especially among Hispanic children and adolescents. Research on Hispanic children and adolescents indicates disproportionately higher prevalence rates of obesity in this community but scant data on ADHD prevalence rates. In contrast, a plethora of research studies across the general population examines the relationship between childhood obesity and ADHD. In addition, there is a lack of research that examines the role of ethnicity and sub-ethnic group correlations in ADHD, particularly in the Hispanic population. Existing studies in the general population indicate ADHD may be a risk factor for being overweight compared to normal controls. The objective of the present study is to examine the prevalence of obesity in children with ADHD compared to children in the general population in a predominately Hispanic sample on the US-Mexico border. A total of 7,270 pediatric medical records were evaluated. The retrospective analysis included Body Mass Index (BMI) and related health variables, and ethnicity and showed that children with ADHD are more likely to be underweight. In conclusion, no significant relationship existed between obesity and ADHD among Hispanic children on the US-Mexico Border, and instead we found the opposite correlation.
RESUMO
Suicidality is one of the leading causes of death among young adults in the United States and represents a significant health problem worldwide. The suicide rate among adolescents in the United States has increased dramatically in the latest years and has been accompanied by considerable changes in youth suicide, especially among young girls. Henceforth, we need a good understanding of the risk factors contributing to suicidal behavior in youth. An explanatory model for suicidal behavior that links clinical and psychological risk factors to the underlying neurobiological, neuropsychological abnormalities related to suicidal behavior might predict to help identify treatment options and have empirical value. Our explanatory model proposes that developmental, biological factors (genetics, proteomics, epigenetics, immunological) and psychological or clinical (childhood adversities) may have causal relevance to the changes associated with suicidal behavior. In this way, our model integrates findings from several perspectives in suicidality and attempts to explain the relationship between various neurobiological, genetic, and clinical observations in suicide research, offering a comprehensive hypothesis to facilitate understanding of this complex outcome. Unraveling the knowledge of the complex interplay of psychological, biological, sociobiological, and clinical risk factors is highly essential, concerning the development of effective prevention strategy plans for suicidal ideation and suicide.
RESUMO
Multiple system atrophy (MSA) is a fatal disorder with no effective treatment. MSA pathology is characterized by α-synuclein (aSyn) accumulation in oligodendrocytes, the myelinating glial cells of the central nervous system (CNS). aSyn accumulation in oligodendrocytes forms the pathognomonic glial cytoplasmic inclusions (GCIs) of MSA. MSA aSyn pathology is also associated with motor and autonomic dysfunction, including an impaired ability to sweat. MSA patients have abnormal CNS expression of glial-cell-line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Our prior studies using the parent compound FTY720, a food and drug administration (FDA) approved immunosuppressive for multiple sclerosis, reveal that FTY720 protects parkinsonian mice by increasing BDNF. Our FTY720-derivative, FTY720-Mitoxy, is known to increase expression of oligodendrocyte BDNF, GDNF, and nerve growth factor (NGF) but does not reduce levels of circulating lymphocytes as it is not phosphorylated so cannot modulate sphingosine 1 phosphate receptors (S1PRs). To preclinically assess FTY720-Mitoxy for MSA, we used mice expressing human aSyn in oligodendrocytes under a 2,' 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter. CNP-aSyn transgenic (Tg) mice develop motor dysfunction between 7 and 9 mo, and progressive GCI pathology. Using liquid chromatography-mass spectrometry (LC-MS/MS) and enzymatic assays, we confirmed that FTY720-Mitoxy was stable and active. Vehicle or FTY720-Mitoxy (1.1â¯mg/kg/day) was delivered to wild type (WT) or Tg littermates from 8.5-11.5 mo by osmotic pump. We behaviorally assessed their movement by rotarod and sweat production by starchiodine test. Postmortem tissues were evaluated by qPCR for BDNF, GDNF, NGF and GDNF-receptor RET mRNA and for aSyn, BDNF, GDNF, and Iba1 protein by immunoblot. MicroRNAs (miRNAs) were also assessed by qPCR. FTY720-Mitoxy normalized movement, sweat function and soleus muscle mass in 11.5 mo Tg MSA mice. FTY720-Mitoxy also increased levels of brain GDNF and reduced brain miR-96-5p, a miRNA that acts to decrease GDNF expression. Moreover, FTY720-Mitoxy blocked aSyn pathology measured by sequential protein extraction and immunoblot, and microglial activation assessed by immunohistochemistry and immunoblot. In the 3-nitropropionic acid (3NP) toxin model of MSA, FTY720-Mitoxy protected movement and mitochondria in WT and CNP-aSyn Tg littermates. Our data confirm potent in vivo protection by FTY720-Mitoxy, supporting its further evaluation as a potential therapy for MSA and related synucleinopathies.
Assuntos
Cloridrato de Fingolimode/análogos & derivados , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Atrofia de Múltiplos Sistemas/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Cloridrato de Fingolimode/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Proteínas Proto-Oncogênicas c-ret/biossíntese , Proteínas Proto-Oncogênicas c-ret/efeitos dos fármacos , alfa-Sinucleína/genéticaRESUMO
Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.