Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(10): 2508-2517, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353954

RESUMO

TBCK-related encephalopathy is a rare pediatric neurodegenerative disorder caused by biallelic loss-of-function variants in the TBCK gene. After receiving anecdotal reports of neurologic phenotypes in both human and mouse TBCK heterozygotes, we quantified if TBCK haploinsufficiency causes a phenotype in mice and humans. Using the tbck+/- mouse model, we performed a battery of behavioral assays and mTOR pathway analysis to investigate potential alterations in neurophysiology. We conducted as well a phenome-wide association study (PheWAS) analysis in a large adult biobank to determine the presence of potential phenotypes associated to this variant. The tbck+/- mouse model demonstrates a reduction of exploratory behavior in animals with significant sex and genotype interactions. The concurrent PheWAS analysis of 10,900 unrelated individuals showed that patients with one copy of a TBCK loss-of-function allele had a significantly higher rate of acquired toe and foot deformities, likely indicative of a mild peripheral neuropathy phenotype. This study presents an example of what may be the underappreciated occurrence of mild neurogenic symptoms in heterozygote individuals of recessive neurogenetic syndromes.


Assuntos
Encefalopatias , Proteínas Serina-Treonina Quinases , Humanos , Criança , Animais , Camundongos , Proteínas Serina-Treonina Quinases/genética , Heterozigoto , Síndrome , Encefalopatias/genética , Fenótipo
2.
Sci Adv ; 9(10): eade1463, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897941

RESUMO

Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems.


Assuntos
Megalencefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Haploinsuficiência , Metiltransferases/genética , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA