Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 112022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193886

RESUMO

The neurophysiology of cells and tissues are monitored electrophysiologically and optically in diverse experiments and species, ranging from flies to humans. Understanding the brain requires integration of data across this diversity, and thus these data must be findable, accessible, interoperable, and reusable (FAIR). This requires a standard language for data and metadata that can coevolve with neuroscience. We describe design and implementation principles for a language for neurophysiology data. Our open-source software (Neurodata Without Borders, NWB) defines and modularizes the interdependent, yet separable, components of a data language. We demonstrate NWB's impact through unified description of neurophysiology data across diverse modalities and species. NWB exists in an ecosystem, which includes data management, analysis, visualization, and archive tools. Thus, the NWB data language enables reproduction, interchange, and reuse of diverse neurophysiology data. More broadly, the design principles of NWB are generally applicable to enhance discovery across biology through data FAIRness.


The brain is an immensely complex organ which regulates many of the behaviors that animals need to survive. To understand how the brain works, scientists monitor and record brain activity under different conditions using a variety of experimental techniques. These neurophysiological studies are often conducted on multiple types of cells in the brain as well as a variety of species, ranging from mice to flies, or even frogs and worms. Such a range of approaches provides us with highly informative, complementary 'views' of the brain. However, to form a complete, coherent picture of how the brain works, scientists need to be able to integrate all the data from these different experiments. For this to happen effectively, neurophysiology data need to meet certain criteria: namely, they must be findable, accessible, interoperable, and re-usable (or FAIR for short). However, the sheer diversity of neurophysiology experiments impedes the 'FAIR'-ness of the information obtained from them. To overcome this problem, researchers need a standardized way to communicate their experiments and share their results ­ in other words, a 'standard language' to describe neurophysiology data. Rübel, Tritt, Ly, Dichter, Ghosh et al. therefore set out to create such a language that was not only FAIR, but could also co-evolve with neurophysiology research. First, they produced a computer software program (called Neurodata Without Borders, or NWB for short) which generated and defined the different components of the new standard language. Then, other tools for data management were created to expand the NWB platform using the standardized language. This included data analysis and visualization methods, as well as an 'archive' to store and access data. Testing the new language and associated tools showed that they indeed allowed researchers to access, analyze, and share information from many different types of experiments, in organisms ranging from flies to humans. The NWB software is open-source, meaning that anyone can obtain a copy and make changes to it. Thus, NWB and its associated resources provide the basis for a collaborative, community-based system for sharing neurophysiology data. Rübel et al. hope that NWB will inspire similar developments across other fields of biology that share similar levels of complexity with neurophysiology.


Assuntos
Ciência de Dados , Ecossistema , Humanos , Metadados , Neurofisiologia , Software
2.
PLoS Comput Biol ; 16(2): e1007696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092054

RESUMO

Increasing availability of comprehensive experimental datasets and of high-performance computing resources are driving rapid growth in scale, complexity, and biological realism of computational models in neuroscience. To support construction and simulation, as well as sharing of such large-scale models, a broadly applicable, flexible, and high-performance data format is necessary. To address this need, we have developed the Scalable Open Network Architecture TemplAte (SONATA) data format. It is designed for memory and computational efficiency and works across multiple platforms. The format represents neuronal circuits and simulation inputs and outputs via standardized files and provides much flexibility for adding new conventions or extensions. SONATA is used in multiple modeling and visualization tools, and we also provide reference Application Programming Interfaces and model examples to catalyze further adoption. SONATA format is free and open for the community to use and build upon with the goal of enabling efficient model building, sharing, and reproducibility.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/métodos , Neurociências , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Bases de Dados Factuais , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Linguagens de Programação , Reprodutibilidade dos Testes , Software
3.
Cell ; 174(1): 21-31.e9, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958109

RESUMO

In speech, the highly flexible modulation of vocal pitch creates intonation patterns that speakers use to convey linguistic meaning. This human ability is unique among primates. Here, we used high-density cortical recordings directly from the human brain to determine the encoding of vocal pitch during natural speech. We found neural populations in bilateral dorsal laryngeal motor cortex (dLMC) that selectively encoded produced pitch but not non-laryngeal articulatory movements. This neural population controlled short pitch accents to express prosodic emphasis on a word in a sentence. Other larynx cortical representations controlling voicing and longer pitch phrase contours were found at separate sites. dLMC sites also encoded vocal pitch during a non-speech singing task. Finally, direct focal stimulation of dLMC evoked laryngeal movements and involuntary vocalization, confirming its causal role in feedforward control. Together, these results reveal the neural basis for the voluntary control of vocal pitch in human speech. VIDEO ABSTRACT.


Assuntos
Laringe/fisiologia , Córtex Motor/fisiologia , Fala , Adolescente , Adulto , Mapeamento Encefálico , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Adulto Jovem
4.
J Neurosci ; 36(28): 7453-63, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27413155

RESUMO

UNLABELLED: Accurate sensory discrimination is commonly believed to require precise representations in the nervous system; however, neural stimulus responses can be highly variable, even to identical stimuli. Recent studies suggest that cortical response variability decreases during stimulus processing, but the implications of such effects on stimulus discrimination are unclear. To address this, we examined electrocorticographic cortical field potential recordings from the human nonprimary auditory cortex (superior temporal gyrus) while subjects listened to speech syllables. Compared with a prestimulus baseline, activation variability decreased upon stimulus onset, similar to findings from microelectrode recordings in animal studies. We found that this decrease was simultaneous with encoding and spatially specific for those electrodes that most strongly discriminated speech sounds. We also found that variability was predominantly reduced in a correlated subspace across electrodes. We then compared signal and variability (noise) correlations and found that noise correlations reduce more for electrodes with strong signal correlations. Furthermore, we found that this decrease in variability is strongest in the high gamma band, which correlates with firing rate response. Together, these findings indicate that the structure of single-trial response variability is shaped to enhance discriminability despite non-stimulus-related noise. SIGNIFICANCE STATEMENT: Cortical responses can be highly variable to auditory speech sounds. Despite this, sensory perception can be remarkably stable. Here, we recorded from the human superior temporal gyrus, a high-order auditory cortex, and studied the changes in the cortical representation of speech stimuli across multiple repetitions. We found that neural variability is reduced upon stimulus onset across electrodes that encode speech sounds.


Assuntos
Mapeamento Encefálico , Potenciais Evocados Auditivos/fisiologia , Dinâmica não Linear , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Eletrocorticografia , Análise Fatorial , Feminino , Análise de Fourier , Humanos , Masculino , Fatores de Tempo
5.
PLoS Comput Biol ; 11(11): e1004554, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26540152

RESUMO

Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Neurológicos , Modelos Estatísticos , Redes Neurais de Computação , Simulação por Computador , Humanos , Propriocepção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA