Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Radiol ; 179: 111679, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39163805

RESUMO

PURPOSE: To investigate the early radiological features and survival of Large Cell Carcinoma (LCC) cases diagnosed in low-dose computed tomography (LDCT) screening trials. METHODS: Two radiologists jointly reviewed the radiological features of screen-detected LCCs observed in NLST, ITALUNG, and LUSI trials between 2002 and 2016, comprising a total of 29,744 subjects who underwent 3-5 annual screening LDCT examinations. Survival or causes of death were established according to the mortality registries extending more than 12 years since randomization. RESULTS: LCC was diagnosed in 30 (4 %) of 750 subjects with screen-detected lung cancer (LC), including 15 prevalent and 15 incident cases. Three additional LCCs occurred as interval cancers during the screening period. LDCT images were available for 29 cases of screen-detected LCCs, and 28 showed a single, peripheral, and well-defined solid nodule or mass with regularly smooth (39 %), lobulated (43 %), or spiculated (18 %) margins. One case presented as hilar mass. In 9 incident LCCs, smaller solid nodules were identified in prior LDCT examinations, allowing us to calculate a mean Volume Doubling Time (VDT) of 98.7 ± 47.8 days. The overall five-year survival rate was 50 %, with a significant (p = 0.0001) difference between stages I-II (75 % alive) and stages III-IV (10 % alive). CONCLUSIONS: LCC is a fast-growing neoplasm that can escape detection by annual LDCT screening. LCC typically presents as a single solid peripheral nodule or mass, often with lobulated margins, and exhibits a short VDT. The 5-year survival reflects the stage at diagnosis.

2.
Magn Reson Imaging ; 113: 110217, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067653

RESUMO

Radiomics of cardiac magnetic resonance (MR) imaging has proved to be potentially useful in the study of various myocardial diseases. Therefore, assessing the repeatability degree in radiomic features measurement is of fundamental importance. The aim of this study was to assess test-retest repeatability of myocardial radiomic features extracted from quantitative T1 and T2 maps. A representative group of 24 subjects (mean age 54 ± 18 years) referred for clinical cardiac MR imaging were enrolled in the study. For each subject, T1 and T2 mapping through MOLLI and T2-prepared TrueFISP acquisition sequences, respectively, were performed at 1.5 T. Then, 98 radiomic features of different classes (shape, first-order, second-order) were extracted from a region of interest encompassing the whole left ventricle myocardium in a short axis slice. The repeatability was assessed performing different and complementary analyses: intraclass correlation coefficient (ICC) and limits of agreement (LOA) (i.e., the interval within which 95% of the percentage differences between two repeated measures are expected to lie). Radiomic features were characterized by a relatively wide range of repeatability degree in terms of both ICC and LOA. Overall, 44.9% and 38.8% of radiomic features showed ICC values > 0.75 for T1 and T2 maps, respectively, while 25.5% and 23.4% of radiomic features showed LOA between ±10%. A subset of radiomic features for T1 (Mean, Median, 10Percentile, 90Percentile, RootMeanSquared, Imc2, RunLengthNonUniformityNormalized, RunPercentage and ShortRunEmphasis) and T2 (MaximumDiameter, RunLengthNonUniformityNormalized, RunPercentage, ShortRunEmphasis) maps presented both ICC > 0.75 and LOA between ±5%. Overall, radiomic features extracted from T1 maps showed better repeatability performance than those extracted from T2 maps, with shape features characterized by better repeatability than first-order and textural features. Moreover, only a limited subset of 9 and 4 radiomic features for T1 and T2 maps, respectively, showed high repeatability degree in terms of both ICC and LOA. These results confirm the importance of assessing test-retest repeatability degree in radiomic feature estimation and might be useful for a more effective/reliable use of myocardial T1 and T2 mapping radiomics in clinical or research studies.

4.
Sci Data ; 11(1): 115, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263181

RESUMO

Pooling publicly-available MRI data from multiple sites allows to assemble extensive groups of subjects, increase statistical power, and promote data reuse with machine learning techniques. The harmonization of multicenter data is necessary to reduce the confounding effect associated with non-biological sources of variability in the data. However, when applied to the entire dataset before machine learning, the harmonization leads to data leakage, because information outside the training set may affect model building, and potentially falsely overestimate performance. We propose a 1) measurement of the efficacy of data harmonization; 2) harmonizer transformer, i.e., an implementation of the ComBat harmonization allowing its encapsulation among the preprocessing steps of a machine learning pipeline, avoiding data leakage by design. We tested these tools using brain T1-weighted MRI data from 1740 healthy subjects acquired at 36 sites. After harmonization, the site effect was removed or reduced, and we showed the data leakage effect in predicting individual age from MRI data, highlighting that introducing the harmonizer transformer into a machine learning pipeline allows for avoiding data leakage by design.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Voluntários Saudáveis , Aprendizado de Máquina , Estudos Multicêntricos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA