Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17350, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441386

RESUMO

The recent trends of vitrimer studies enhance the thermoset material with superior properties, therefore, it is particularly important to address the critical scientific inquiries in this area using their research metrics. The reported vitrimer systems have been highly required for future real-time applications; however, the inquisitiveness of material exchange mechanisms extends the research studies further. Significantly, more scientific information's are required to achieve the evident prospective outcomes via these materials. This article highlights the trends and developments of the most relevant publications, authors, articles, countries, and keywords in the vitrimer research field over the past 10 years. The represented bibliometric survey would elevate the basic understanding of the current vitrimer research stats and also help follow the particular research community to learn and develop insight. To generate bibliometric networks, bibliometric data has obtained from Scopus and visualised in VOS-viewer; as an overview of that, the highest number of publications were from China, United States, France, United Kingdom, and Spain.

2.
ACS Omega ; 3(10): 12813-12823, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458007

RESUMO

Nanomaterial-loaded thermoplastics are attractive for applications in adaptive printing methods, as the physical properties of the printed materials are dependent on the nanomaterial type and degree of dispersion. This study compares the dispersion and the impact on the dielectric properties of two common nanoparticles, nickel and iron oxide, loaded into polystyrene. Comparisons between commercial and synthetically prepared samples indicate that well-passivated synthetically prepared nanomaterials are dispersed and minimize the impact on the dielectric properties of the host polymer by limiting particle-particle contacts. Commercial samples were observed to phase-segregate, leading to the loss of the low-k performance of polystyrene. The change in the real and imaginary dielectric was systematically studied in two earth abundant nanoparticles at the concentration between 0 and 13 vol % (0-50 wt %). By varying the volume percentage of fillers in the matrix, it is shown that one can increase the magnetic properties of the materials while minimizing unwanted contributions to the dielectric constant and dielectric loss. The well-dispersed nanoparticle systems were successfully modeled through the Looyenga dielectric theory, thus giving one a predictive ability for the dielectric properties. The current experimental work coupled with modeling could facilitate future material choices and guide design rules for printable polymer composite systems.

3.
Nanoscale Res Lett ; 11(1): 422, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27659951

RESUMO

We report highly sensitive and reliable strain sensors based on silver nanoparticle (AgNP) and carbon nanotube (CNT) composite thin films. The CNT/AgNP was prepared by a screen printing process using a mixture of a CNT paste and an AgNP ink. It is discovered that the sensitivity of such sensors are highly dependent on the crack formation in the composites. By altering the substrate use and the relative ratios of AgNPs and CNTs, the formation and propagation of cracks can be properly engineered, leading to piezoresistive strain sensors with enhanced sensitivity and robustness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA