Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
J Leukoc Biol ; 116(1): 177-185, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484149

RESUMO

In chronic inflammation, regulatory immune cells, such as regulatory T cells and myeloid-derived suppressor cells, can develop. Local signals in the inflamed tissue, such as cytokines and eicosanoids, but also contact-dependent signals, can promote myeloid-derived suppressor cell development. In the liver, hepatic stellate cells may provide such signals via the expression of CD44. Myeloid-derived suppressor cells generated in the presence of hepatic stellate cells and anti-CD44 antibodies were functionally and phenotypically analyzed. We found that both monocytic and polymorphonuclear myeloid-derived suppressor cells generated in the presence of αCD44 antibodies were less suppressive toward T cells as measured by T-cell proliferation and cytokine production. Moreover, both monocytic and polymorphonuclear myeloid-derived suppressor cells were phenotypically altered. Monocytic myeloid-derived suppressor cells mainly changed their expression of CD80 and CD39, and polymorphonuclear myeloid-derived suppressor cells showed altered expression of CD80/86, PD-L1, and CCR2. Moreover, both polymorphonuclear and monocytic myeloid-derived suppressor cells lost expression of Nos2 messenger RNA, whereas monocytic myeloid-derived suppressor cells showed reduced expression of TGFb messenger RNA and polymorphonuclear myeloid-derived suppressor cells reduced expression of Il10 messenger RNA. In summary, the presence of CD44 in hepatic stellate cells promotes the induction of both monocytic and polymorphonuclear myeloid-derived suppressor cells, although the mechanisms by which these myeloid-derived suppressor cells may increase suppressive function due to interaction with CD44 are only partially overlapping.


Assuntos
Células Estreladas do Fígado , Receptores de Hialuronatos , Monócitos , Células Supressoras Mieloides , Células Estreladas do Fígado/metabolismo , Animais , Receptores de Hialuronatos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Monócitos/metabolismo , Monócitos/imunologia , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Masculino , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
3.
J Hematol Oncol ; 16(1): 23, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932441

RESUMO

BACKGROUND: The immunological composition of the tumor microenvironment has a decisive influence on the biological course of cancer and is therefore of profound clinical relevance. In this study, we analyzed the cooperative effects of integrin ß4 (ITGB4) on tumor cells and E-/P-selectin on endothelial cells within the tumor stroma for regulating tumor growth by shaping the local and systemic immune environment. METHODS: We used several preclinical mouse models for different solid human cancer types (xenograft and syngeneic) to explore the role of ITGB4 (shRNA-mediated knockdown in tumor cells) and E-/P-selectins (knockout in mice) for tumor growth; effects on apoptosis, proliferation and intratumoral signaling pathways were determined by histological and biochemical methods and 3D in vitro experiments; changes in the intratumoral and systemic immune cell composition were determined by flow cytometry and immunohistochemistry; chemokine levels and their attracting potential were measured by ELISA and 3D invasion assays. RESULTS: We observed a very robust synergism between ITGB4 and E-/P-selectin for the regulation of tumor growth, accompanied by an increased recruitment of CD11b+ Gr-1Hi cells with low granularity (i.e., myeloid-derived suppressor cells, MDSCs) specifically into ITGB4-depleted tumors. ITGB4-depleted tumors undergo apoptosis and actively attract MDSCs, well-known to promote tumor growth in several cancers, via increased secretion of different chemokines. MDSC trafficking into tumors crucially depends on E-/P-selectin expression. Analyses of clinical samples confirmed an inverse relationship between ITGB4 expression in tumors and number of tumor-infiltrating leukocytes. CONCLUSIONS: These findings suggest a distinct vulnerability of ITGB4Lo tumors for MDSC-directed immunotherapies.


Assuntos
Integrina beta4 , Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Quimiocinas , Células Endoteliais/metabolismo , Integrina beta4/metabolismo , Selectina-P , Microambiente Tumoral
4.
Cells ; 11(17)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36078047

RESUMO

Interleukin-2 is central to the induction and maintenance of both natural (nTreg) and induced Foxp3-expressing regulatory T cells (iTreg). Thus, signals that modulate IL-2 availability may, in turn, also influence Treg homeostasis. Using global knockout and cell-specific knockout mouse models, we evaluated the role of the small GTPase ADP-ribosylation factor 4d (Arl4d) in regulatory T-cell biology. We show that the expression of Arl4d in T cells restricts both IL-2 production and responsiveness to IL-2, as measured by the phosphorylation of STAT5. Arl4d-deficient CD4 T cells converted more efficiently into Foxp3+ iTreg in vitro in the presence of αCD3ε and TGFß, which was associated with their enhanced IL-2 secretion. As such, Arl4d-/- CD4 T cells induced significantly less colonic inflammation and lymphocytic infiltration in a model of transfer colitis. Thus, our data reveal a negative regulatory role for Arl4d in CD4 T-cell biology, limiting iTreg conversion via the restriction of IL-2 production, leading to reduced induction of Treg from conventional CD4 T cells.


Assuntos
Interleucina-2 , Linfócitos T Reguladores , Fatores de Ribosilação do ADP/metabolismo , Animais , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Cells ; 11(9)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563816

RESUMO

Immune-mediated glomerular diseases are characterized by infiltration of T cells, which accumulate in the periglomerular space and tubulointerstitium in close contact to proximal and distal tubuli. Recent studies described proximal tubular epithelial cells (PTECs) as renal non-professional antigen-presenting cells that stimulate CD4+ T-cell activation. Whether PTECs have the potential to induce activation of CD8+ T cells is less clear. In this study, we aimed to investigate the capacity of PTECs for antigen cross-presentation thereby modulating CD8+ T-cell responses. We showed that PTECs expressed proteins associated with cross-presentation, internalized soluble antigen via mannose receptor-mediated endocytosis, and generated antigenic peptides by proteasomal degradation. PTECs induced an antigen-dependent CD8+ T-cell activation in the presence of soluble antigen in vitro. PTEC-activated CD8+ T cells expressed granzyme B, and exerted a cytotoxic function by killing target cells. In murine lupus nephritis, CD8+ T cells localized in close contact to proximal tubuli. We determined enhanced apoptosis in tubular cells and particularly PTECs up-regulated expression of cleaved caspase-3. Interestingly, induction of apoptosis in the inflamed kidney was reduced in the absence of CD8+ T cells. Thus, PTECs have the capacity for antigen cross-presentation thereby inducing cytotoxic CD8+ T cells in vitro, which may contribute to the pathology of immune-mediated glomerulonephritis.


Assuntos
Linfócitos T CD8-Positivos , Túbulos Renais Proximais , Animais , Apresentação de Antígeno , Apresentação Cruzada , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos
6.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769006

RESUMO

Myeloid cells play an essential role in the maintenance of liver homeostasis, as well as the initiation and termination of innate and adaptive immune responses. In chronic hepatic inflammation, the production of transforming growth factor beta (TGF-ß) is pivotal for scarring and fibrosis induction and progression. TGF-ß signalling is tightly regulated via the Smad protein family. Smad7 acts as an inhibitor of the TGF-ß-signalling pathway, rendering cells that express high levels of it resistant to TGF-ß-dependent signal transduction. In hepatocytes, the absence of Smad7 promotes liver fibrosis. Here, we examine whether Smad7 expression in myeloid cells affects the extent of liver inflammation, injury and fibrosis induction during chronic liver inflammation. Using the well-established model of chronic carbon tetrachloride (CCl4)-mediated liver injury, we investigated the role of Smad7 in myeloid cells in LysM-Cre Smadfl/fl mice that harbour a myeloid-specific knock-down of Smad7. We found that the chronic application of CCl4 induces severe liver injury, with elevated serum alanine transaminase (ALT)/aspartate transaminase (AST) levels, centrilobular and periportal necrosis and immune-cell infiltration. However, the myeloid-specific knock-down of Smad7 did not influence these and other parameters in the CCl4-treated animals. In summary, our results suggest that, during long-term application of CCl4, Smad7 expression in myeloid cells and its potential effects on the TGF-ß-signalling pathway are dispensable for regulating the extent of chronic liver injury and inflammation.


Assuntos
Tetracloreto de Carbono/farmacologia , Inflamação/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Hepatopatias/metabolismo , Células Mieloides/metabolismo , Proteína Smad7/deficiência , Alanina Transaminase/metabolismo , Animais , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Transdução de Sinais/fisiologia , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismo
7.
Pathol Oncol Res ; 27: 596522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257546

RESUMO

Purpose: Abrogation of Notch signaling, which is pivotal for lung development and pulmonary epithelial cell fate decisions was shown to be involved in the aggressiveness and the differentiation of lung carcinomas. Additionally, the transcription factors YAP and TAZ which are involved in the Hippo pathway, were recently shown to be tightly linked with Notch signaling and to regulate the cell fate in epidermal stem cells. Thus, we aim to elucidate the effects of conditional Notch1 deficiency on carcinogenesis and TAZ expression in lung cancer. Methods: We investigated the effect of conditional Cre-recombinase mediated Notch1 knock-out on lung cancer cells in vivo using an autochthonous mouse model of lung adenocarcinomas driven by Kras LSL-G12V and comprehensive immunohistochemical analysis. In addition, we analyzed clinical samples and human lung cancer cell lines for TAZ expression and supported our findings by publicly available data from The Cancer Genome Atlas (TCGA). Results: In mice, we found induction of papillary adenocarcinomas and protrusions of tumor cells from the bronchiolar lining upon Notch1 deficiency. Moreover, the mutated Kras driven lung tumors with deleted Notch1 showed increased TAZ expression and focal nuclear translocation which was frequently observed in human pulmonary adenocarcinomas and squamous cell carcinomas of the lung, but not in small cell lung carcinomas. In addition, we used data from TCGA to show that putative inactivating NOTCH1 mutations co-occur with KRAS mutations and genomic amplifications in lung adenocarcinomas. Conclusion: Our in vivo study provides evidence that Notch1 deficiency in mutated Kras driven lung carcinomas contributes to lung carcinogenesis in a subgroup of patients by increasing TAZ expression who might benefit from TAZ signaling blockade.


Assuntos
Aciltransferases/metabolismo , Brônquios/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Notch1/fisiologia , Aciltransferases/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Brônquios/metabolismo , Carcinogênese , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Células Tumorais Cultivadas
8.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201252

RESUMO

Since 2009, several first, second, and third generation EGFR tyrosine kinase inhibitors (TKI) have been approved for targeted treatment of EGFR mutated metastatic non-small lung cancer (NSCLC). A vast majority of patients is improving quickly on treatment; however, resistance is inevitable and typically occurs after one year for TKI of the first and second generation. Osimertinib, a third generation TKI, has recently been approved for first line treatment in the palliative setting and is expected to become approved for the adjuvant setting as well. Progression-free survival (PFS) under osimertinib is superior to its predecessors but its spectrum of resistance alterations appears significantly more diverse compared to first and second generation EGFR TKI. As resistance mechanisms to osimertinib are therapeutically targetable in some cases, it is important to comprehensively test for molecular alterations in the relapse scenario. Liquid biopsy may be advantageous over tissue analysis as it has the potential to represent tumor heterogeneity and clonal diversification. We have previously shown high concordance of hybrid capture (HC) based next generation sequencing (NGS) in liquid biopsy versus solid tumor biopsies. In this study, we now present real-word data from 56 patients with metastatic NSCLC that were tested by liquid biopsy at the time of disease progression on mostly second line treated osimertinib treatment. We present examples of single and multiple TKI resistance mechanisms, including mutations in multiple pathways, copy number changes and rare fusions of RET, ALK, FGFR3 and BRAF. In addition, we present the added value of HC based NGS to reveal polyclonal resistance development at the DNA level encoding multiple EGFR C797S and PIK3CA mutations.

9.
Cell Mol Immunol ; 18(1): 92-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33110250

RESUMO

The liver is an important immunological organ that controls systemic tolerance. The liver harbors professional and unconventional antigen-presenting cells that are crucial for tolerance induction and maintenance. Orchestrating the immune response in homeostasis depends on a healthy and well-toned immunological liver microenvironment, which is maintained by the crosstalk of liver-resident antigen-presenting cells and intrahepatic and liver-infiltrating leukocytes. In response to pathogens or autoantigens, tolerance is disrupted by unknown mechanisms. Intrahepatic parenchymal and nonparenchymal cells exhibit unique antigen-presenting properties. The presentation of microbial and endogenous lipid-, metabolite- and peptide-derived antigens from the gut via conventional and nonconventional mechanisms can educate intrahepatic immune cells and elicit effector responses or tolerance. Perturbation of this balance results in autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Although the exact etiologies of these autoimmune liver diseases are unknown, it is thought that the disruption of tolerance towards self-antigens and microbial metabolites and lipids, as well as alterations in bile acid composition, may result in changes in effector cell activation and polarization and may reduce or impair protective anti-inflammatory regulatory T and B cell responses. Additionally, the canonical and noncanonical transmission of antigens and antigen:MHC complexes via trogocytosis or extracellular vesicles between different (non) immune cells in the liver may play a role in the induction of hepatic inflammation and tolerance. Here, we summarize emerging aspects of antigen presentation, autoantibody production, and the application of novel therapeutic approaches in the characterization and treatment of autoimmune liver diseases.


Assuntos
Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Tolerância Imunológica , Hepatopatias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/terapia , Humanos , Hepatopatias/terapia
10.
Cancers (Basel) ; 12(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599951

RESUMO

In recent years, Non-small cell lung cancer (NSCLC) has evolved into a prime example for precision oncology with multiple FDA-approved "precision" drugs. For the majority of NSCLC lacking targetable genetic alterations, immune checkpoint inhibition (ICI) has become standard of care in first-line treatment or beyond. PD-L1 tumor expression represents the only approved predictive biomarker for PD-L1/PD-1 checkpoint inhibition by therapeutic antibodies. Since PD-L1-negative or low-expressing tumors may also respond to ICI, additional factors are likely to contribute in addition to PD-L1 expression. Tumor mutation burden (TMB) has emerged as a potential candidate; however, it is the most complex biomarker so far and might represent a challenge for routine diagnostics. We therefore established a hybrid capture (HC) next-generation sequencing (NGS) assay that covers all oncogenic driver alterations as well as TMB and validated TMB values by correlation with the assay (F1CDx) used for the CheckMate 227 study. Results of the first consecutive 417 patients analyzed in a routine clinical setting are presented. Data show that fast reliable comprehensive diagnostics including TMB and targetable alterations are obtained with a short turn-around time. Thus, even complex biomarkers can easily be implemented in routine practice to optimize treatment decisions for advanced NSCLC.

11.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260486

RESUMO

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates target gene expression upon ligand binding. Apart from its effects on metabolism, PPARγ activity can inhibit the production of pro-inflammatory cytokines by several immune cells, including dendritic cells and macrophages. In chronic inflammatory disease models, PPARγ activation delays the onset and ameliorates disease severity. Here, we investigated the effect of PPARγ activation by the agonist Pioglitazone on the function of hepatic immune cells and its effect in a murine model of immune-mediated hepatitis. Cytokine production by both liver sinusoidal endothelial cells (IL-6) and in T cells ex vivo (IFNγ) was decreased in cells from Pioglitazone-treated mice. However, PPARγ activation did not decrease pro-inflammatory tumor necrosis factor alpha TNFα production by Kupffer cells after Toll-like receptor (TLR) stimulation ex vivo. Most interestingly, although PPARγ activation was shown to ameliorate chronic inflammatory diseases, it did not improve hepatic injury in a model of immune-mediated hepatitis. In contrast, Pioglitazone-induced PPARγ activation exacerbated D-galactosamine (GalN)/lipopolysaccharide (LPS) hepatitis associated with an increased production of TNFα by Kupffer cells and increased sensitivity of hepatocytes towards TNFα after in vivo Pioglitazone administration. These results unravel liver-specific effects of Pioglitazone that fail to attenuate liver inflammation but rather exacerbate liver injury in an experimental hepatitis model.


Assuntos
Hepatite Autoimune/imunologia , PPAR gama/agonistas , Pioglitazona/farmacologia , Animais , Células Cultivadas , Interferon gama/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/imunologia , Ativação Linfocitária , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Oncotarget ; 11(3): 250-264, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32076486

RESUMO

INTRODUCTION: The impact of TP53 co-mutations in EGFR mutated patients on PFS and OS is controversial. Different classifications of TP53 mutations with respect to functional and potential clinical impact have been published. Therefore, we retrospectively analyzed the impact of TP53 co-mutations on ORR, PFS and OS in a cohort of EGFR mutated NSCLC IV patients (UICC 7) using different classifications of TP53 mutations. METHODS: 75 EGFR mutated NSCLC IV patients homogeneously treated with 1st line EGFR TKI were analyzed for TP53 co-mutations. TP53 mutations were classified according to three different types of classifications. The endpoints ORR, PFS and OS were investigated. RESULTS: TP53 co-mutations were found in 29/59 patients (49.2%). TP53 co-mutations were a statistically significant independent negative predictive factor for ORR, PFS and OS. TP53 co-mutations were associated with inferior mPFS and mOS: mPFS/mOS 12 vs. 18/24 vs. 42 months for non-disruptive/disruptive mutations vs. WT (p < 0.004)/(p < 0.009), 11 vs. 17/23 vs. 42 months for pathogenic vs. non-pathogenic/WT (p < 0.001)/(p < 0.001), and 7 vs. 12 vs. 18/12 vs. 28 vs. 42 months for exon 8 vs. non-exon 8 vs. WT (p < 0.001)/(p < 0.002). CONCLUSIONS: TP53 co-mutations are frequent in EGFR mt+ NSCLC and have a strong negative impact on all clinical endpoints of TKI therapy.

13.
Front Immunol ; 10: 2670, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798592

RESUMO

The clearance of apoptotic cells is pivotal for both maintaining tissue homeostasis and returning to homeostasis after tissue injury as part of the regenerative resolution response. The liver is known for its capacity to remove aged and damaged cells from the circulation and can serve as a graveyard for effector T cells. In particular Kupffer cells are active phagocytic cells, but during hepatic inflammatory responses incoming neutrophils and monocytes may contribute to pro-inflammatory damage. To stimulate resolution of such inflammation, myeloid cell function can change, via sensing of environmental changes in the inflammatory milieu. Also, the removal of apoptotic cells via efferocytosis and the signaling pathways that are activated in macrophages/phagocytes upon their engulfment of apoptotic cells are important for a return to tissue homeostasis. Here, we will discuss, how efferocytosis mechanisms in hepatic macrophages/phagocytes may regulate tissue homeostasis and be involved in tissue regeneration in liver disease.


Assuntos
Homeostase/fisiologia , Fígado/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Animais , Humanos , Fígado/imunologia , Hepatopatias/imunologia , Hepatopatias/metabolismo , Macrófagos/imunologia
14.
Int J Mol Sci ; 20(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698731

RESUMO

Myeloid cells are essential for the initiation and termination of innate and adaptive immunity that create homeostasis in the liver. Smad7 is an inhibitor of the transforming growth factor ß (TGF-ß) signaling pathway, which regulates inflammatory cellular processes. Knockdown of Smad7 in hepatocytes has been shown to promote liver fibrosis, but little is known about the effects of Smad7 in myeloid cells during inflammatory responses in the liver. Using mice with a myeloid-specific knockdown of Smad7 (LysM-Cre Smad7fl/fl), we investigated the impact of Smad7 deficiency in myeloid cells on liver inflammation and regeneration using the well-established model of CCl4-mediated liver injury. Early (24/48 h) and late (7 d) time points were analyzed. We found that CCl4 induces severe liver injury, with elevated serum ALT levels, centrilobular and periportal necrosis, infiltrating myeloid cells and an increase of inflammatory cytokines in the liver. Furthermore, as expected, inflammation peaked at 24 h and subsided after 7 d. However, the knockdown of Smad7 in myeloid cells did not affect any of the investigated parameters in the CCl4-treated animals. In summary, our results suggest that the inhibition of TGF-ß signaling via Smad7 expression in myeloid cells is dispensable for the induction and control of acute CCl4-induced liver injury.


Assuntos
Tetracloreto de Carbono/administração & dosagem , Fígado/lesões , Fígado/metabolismo , Células Mieloides/metabolismo , Doença Aguda , Animais , Ciclo Celular/genética , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/patologia , Fígado/patologia , Regeneração Hepática , Masculino , Camundongos
15.
Sci Rep ; 8(1): 16123, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382149

RESUMO

Interleukin-2 (IL-2) is a key regulator of adaptive immune responses but its regulation is incompletely understood. We previously found that PDL1-dependent signals were pivotal for liver sinusoidal endothelial cell-mediated priming of CD8 T cells, which have a strongly reduced capacity to produce IL-2. Here, we show that the expression of the ARF-like GTPase Arl4d is PD-L1-dependently induced in such LSEC-primed T cells, and is associated with reduced IL-2 secretion and Akt phosphorylation. Conversely, Arl4d-deficient T cells overproduced IL-2 upon stimulation. Arl4d-deficiency in CD8 T cells also enhanced their expansion and effector function during viral infection in vivo. Consistent with their increased IL-2 production, Arl4d-deficient T cells showed enhanced development into KLRG1+CD127- short-lived effector cells (SLEC), which is dependent on IL-2 availability. Thus, our data reveal a PD-L1-dependent regulatory circuitry that involves the induction of Arl4d for limiting IL-2 production in T cells.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Interleucina-2/biossíntese , Fatores de Ribosilação do ADP/deficiência , Adenoviridae/fisiologia , Animais , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular , Proliferação de Células , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Interleucina-2/metabolismo , Fígado/citologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Hepatology ; 68(1): 200-214, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29377208

RESUMO

A dysbalance between effector T cells (Tconv) and regulatory T cells (Tregs) and impaired Treg function can cause autoimmune liver disease. Therefore, it is important to identify molecular mechanisms that control Treg homeostasis. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1; CD66a) is an immune coreceptor with dichotomous roles in T-cell regulation: its short isoform (CEACAM1S) can activate T cells and induce Tregs, whereas its long isoform (CEACAM1L), containing two intracellular immune receptor tyrosine-based inhibitory motifs, can inhibit activated T-cell function. In the liver, CEACAM1 has antifibrotic effects in models of nonalcoholic steatohepatitis. However, its role in immune-mediated hepatitis is unknown. In the mouse model of concanavalin A-induced CD4+ T-cell-dependent liver injury, liver damage was aggravated and persisted in Ceacam1-/- mice. Concomitantly, we observed hyperexpansion of Tconv, but reduction of interleukin (IL)-2 production and hepatic forkhead box protein P3+ (Foxp3+ )CD4+ Treg numbers. CEACAM1-/- CD4+ T cells showed impaired IL-2-mediated signal transducer and activator of transcription 5 (STAT5) phosphorylation, which correlated with a failure of naïve CEACAM1-/- CD4+ T cells to convert into Tregs in vitro. Furthermore, CEACAM1-/- Tregs expressed reduced levels of Foxp3, CD25, and B-cell lymphoma 2. Adoptive transfer experiments demonstrated that hepatic Treg expansion and suppressive activity required CEACAM1 expression on both CD4+ T cells and Tregs. We identified predominant CEACAM1S expression on hepatic CD4+ T cells and Tregs from mice with acute liver injury and expression of both isoforms in liver-derived CD4+ T-cell clones from patients with liver injury. CONCLUSION: Our data suggest that CEACAM1S expression in CD4+ T cells augments IL-2 production and STAT5 phosphorylation leading to enhanced Treg induction and stability, which, ultimately, confers protection from T-cell-mediated liver injury. (Hepatology 2018;68:200-214).


Assuntos
Antígenos CD/fisiologia , Moléculas de Adesão Celular/fisiologia , Hepatite Autoimune/imunologia , Linfócitos T Reguladores/fisiologia , Animais , Estudos de Casos e Controles , Concanavalina A , Feminino , Humanos , Interleucina-2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Fator de Transcrição STAT5/metabolismo
17.
Oncoimmunology ; 6(8): e1338995, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28920004

RESUMO

Tumor immune escape is a critical problem which frequently accounts for the failure of therapeutic tumor vaccines. Among the most potent suppressors of tumor immunity are myeloid derived suppressor cells (MDSCs). MDSCs can be targeted by all-trans-retinoic-acid (atRA), which reduced their numbers and increased response rates in several vaccination studies. However, not much is known about the optimal administration interval between atRA and the vaccine as well as about its mode of action. Here we demonstrate in 2 different murine tumor models that mice unresponsive to a therapeutic vaccine harbored higher MDSC numbers than did responders. Application of atRA overcame MDSC-mediated immunosuppression and restored tumor control. Importantly, atRA was protective only when administered 3 d after vaccination (delayed treatment), whereas simultaneous administration even decreased the anti-tumor immune response and reduced survival. When analyzing the underlying mechanisms, we found that delayed, but not simultaneous atRA treatment with vaccination abrogated the suppressive capacity in monocytic MDSCs and instead caused them to upregulate MHC-class-II. Consistently, MDSCs from patients with colorectal carcinoma also failed to upregulate HLA-DR after ex vivo treatment with TLR-ligation. Overall, we demonstrate that atRA can convert non-responders to responders to vaccination by suppressing MDSCs function and not only by reducing their number. Moreover, we identify a novel, strictly time-dependent mode of action of atRA to be considered during immunotherapeutic protocols in the future.

18.
Cell Mol Immunol ; 13(3): 277-92, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27041638

RESUMO

The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the "liver tolerance effect". Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Tolerância Imunológica , Fígado/imunologia , Linfócitos T Reguladores/imunologia , Animais , Humanos , Sistema Imunitário , Fígado/ultraestrutura , Modelos Biológicos
19.
Life Sci ; 151: 348-358, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921632

RESUMO

AIMS: The pathogenesis of myocardial ischemia-reperfusion injury (MI/R) involves an inflammatory response. Since the four-and-a-half LIM domain-containing protein 2 (Fhl2) has been observed to modulate immune cell migration, we aimed to study the consequences of Fhl2(-/-) under MI/R with respect to immune reaction, scar formation, and hemodynamic performance. MATERIAL AND METHODS: In a closed chest model of 1h MI/R, immune cell invasion of phagocytic monocytes was characterized by flow cytometry and immunohistochemistry. In addition, infarct size was assessed by triphenyltetrazolium chloride/Masson trichrome staining 24h/21days after reperfusion and a set of hemodynamic parameters was recorded by catheterisation in Fhl2(-/-) mice and controls. KEY FINDINGS: While flow cytometry did not reveal differences in myocardial CD45(high) immune cell infiltrate, histological analysis showed that infiltrating immune cells in Fhl2(-/-) animals were preferentially located in the perivascular area, whereas in wild type, immune cells were well dispersed within the area at risk. After 24h and 21days of reperfusion, infarct size was significantly reduced in Fhl2(-/-) compared to WT animals. In addition, hemodynamic performance was better in Fhl2(-/-) mice, compared to WT mice up to day 21 of reperfusion. The loss of Fhl2 leads to an altered immune response to myocardial ischemia, which results in smaller infarcts and better hemodynamic performance up to 21days after myocardial ischemia reperfusion. SIGNIFICANCE: Immune cell invasion plays a pivotal role in the context of MI/R. Fhl2 significantly influences immune cell function and immune cell interaction with injured cardiac tissue leading to altered scar composition.


Assuntos
Cicatriz/fisiopatologia , Hemodinâmica/fisiologia , Inflamação/patologia , Proteínas com Homeodomínio LIM/deficiência , Proteínas Musculares/deficiência , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão/fisiopatologia , Fatores de Transcrição/deficiência , Animais , Movimento Celular/imunologia , Cicatriz/patologia , Proteínas com Homeodomínio LIM/genética , Antígenos Comuns de Leucócito/imunologia , Masculino , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/fisiologia , Proteínas Musculares/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão/patologia , Fatores de Transcrição/genética
20.
Cancer Immunol Immunother ; 65(3): 273-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26786874

RESUMO

Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8+ T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches.


Assuntos
Células Estreladas do Fígado/fisiologia , Células Mieloides/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Celecoxib/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dasatinibe/farmacologia , Relação Dose-Resposta a Droga , Humanos , Tolerância Imunológica , Indóis/farmacologia , Monócitos/fisiologia , Células Mieloides/imunologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Sorafenibe , Sunitinibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA