Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Neurooncol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789843

RESUMO

PURPOSE: High-grade glioma (HGG) is the most common and deadly malignant glioma of the central nervous system. The current standard of care includes surgical resection of the tumor, which can lead to functional and cognitive deficits. The aim of this study is to develop models capable of predicting functional outcomes in HGG patients before surgery, facilitating improved disease management and informed patient care. METHODS: Adult HGG patients (N = 102) from the neurosurgery brain tumor service at Washington University Medical Center were retrospectively recruited. All patients completed structural neuroimaging and resting state functional MRI prior to surgery. Demographics, measures of resting state network connectivity (FC), tumor location, and tumor volume were used to train a random forest classifier to predict functional outcomes based on Karnofsky Performance Status (KPS < 70, KPS ≥ 70). RESULTS: The models achieved a nested cross-validation accuracy of 94.1% and an AUC of 0.97 in classifying KPS. The strongest predictors identified by the model included FC between somatomotor, visual, auditory, and reward networks. Based on location, the relation of the tumor to dorsal attention, cingulo-opercular, and basal ganglia networks were strong predictors of KPS. Age was also a strong predictor. However, tumor volume was only a moderate predictor. CONCLUSION: The current work demonstrates the ability of machine learning to classify postoperative functional outcomes in HGG patients prior to surgery accurately. Our results suggest that both FC and the tumor's location in relation to specific networks can serve as reliable predictors of functional outcomes, leading to personalized therapeutic approaches tailored to individual patients.

2.
Neuroimage ; 285: 120494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086495

RESUMO

White matter hyperintensities (WMH) are nearly ubiquitous in the aging brain, and their topography and overall burden are associated with cognitive decline. Given their numerosity, accurate methods to automatically segment WMH are needed. Recent developments, including the availability of challenge data sets and improved deep learning algorithms, have led to a new promising deep-learning based automated segmentation model called TrUE-Net, which has yet to undergo rigorous independent validation. Here, we compare TrUE-Net to six established automated WMH segmentation tools, including a semi-manual method. We evaluated the techniques at both global and regional level to compare their ability to detect the established relationship between WMH burden and age. We found that TrUE-Net was highly reliable at identifying WMH regions with low false positive rates, when compared to semi-manual segmentation as the reference standard. TrUE-Net performed similarly or favorably when compared to the other automated techniques. Moreover, TrUE-Net was able to detect relationships between WMH and age to a similar degree as the reference standard semi-manual segmentation at both the global and regional level. These results support the use of TrUE-Net for identifying WMH at the global or regional level, including in large, combined datasets.


Assuntos
Leucoaraiose , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Envelhecimento
3.
Ann Neurol ; 95(3): 495-506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038976

RESUMO

OBJECTIVE: Biomarkers of Alzheimer disease vary between groups of self-identified Black and White individuals in some studies. This study examined whether the relationships between biomarkers or between biomarkers and cognitive measures varied by racialized groups. METHODS: Cerebrospinal fluid (CSF), amyloid positron emission tomography (PET), and magnetic resonance imaging measures were harmonized across four studies of memory and aging. Spearman correlations between biomarkers and between biomarkers and cognitive measures were calculated within each racialized group, then compared between groups by standard normal tests after Fisher's Z-transformations. RESULTS: The harmonized dataset included at least one biomarker measurement from 495 Black and 2,600 White participants. The mean age was similar between racialized groups. However, Black participants were less likely to have cognitive impairment (28% vs 36%) and had less abnormality of some CSF biomarkers including CSF Aß42/40, total tau, p-tau181, and neurofilament light. CSF Aß42/40 was negatively correlated with total tau and p-tau181 in both groups, but at a smaller magnitude in Black individuals. CSF Aß42/40, total tau, and p-tau181 had weaker correlations with cognitive measures, especially episodic memory, in Black than White participants. Correlations of amyloid measures between CSF (Aß42/40, Aß42) and PET imaging were also weaker in Black than White participants. Importantly, no differences based on race were found in correlations between different imaging biomarkers, or in correlations between imaging biomarkers and cognitive measures. INTERPRETATION: Relationships between CSF biomarkers but not imaging biomarkers varied by racialized groups. Imaging biomarkers performed more consistently across racialized groups in associations with cognitive measures. ANN NEUROL 2024;95:495-506.


Assuntos
Doença de Alzheimer , Cognição , Disfunção Cognitiva , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano , Negro ou Afro-Americano , Brancos
4.
Int J Part Ther ; 10(1): 32-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37823016

RESUMO

Purpose: Pediatric brain tumor patients often experience significant cognitive sequelae. Resting-state functional MRI (rsfMRI) provides a measure of brain network organization, and we hypothesize that pediatric brain tumor patients treated with proton therapy will demonstrate abnormal brain network architecture related to cognitive outcome and radiation dosimetry. Participants and Methods: Pediatric brain tumor patients treated with proton therapy were enrolled on a prospective study of cognitive assessment using the NIH Toolbox Cognitive Domain. rsfMRI was obtained in participants able to complete unsedated MRI. Brain system segregation (BSS), a measure of brain network architecture, was calculated for the whole brain, the high-level cognition association systems, and the sensory-motor systems. Results: Twenty-six participants were enrolled in the study for cognitive assessment, and 18 completed rsfMRI. There were baseline cognitive deficits in attention and inhibition and processing speed prior to radiation with worsening performance over time in multiple domains. Average BSS across the whole brain was significantly decreased in participants compared with healthy controls (1.089 and 1.101, respectively; P = 0.001). Average segregation of association systems was significantly lower in participants than in controls (P < 0.001) while there was no difference in the sensory motor networks (P = 0.70). Right hippocampus dose was associated with worse attention and inhibition (P < 0.05) and decreased segregation in the dorsal attention network (P < 0.05). Conclusion: Higher mean dose to the right hippocampus correlated with worse dorsal attention network segregation and worse attention and inhibition cognitive performance. Patients demonstrated alterations in brain network organization of association systems measured with rsfMRI; however, somatosensory system segregation was no different from healthy children. Further work with preradiation rsfMRI is needed to assess the effects of surgery and presence of a tumor on brain network architecture.

5.
J Neurooncol ; 164(2): 309-320, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37668941

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care. METHODS: GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models. RESULTS: The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks. CONCLUSION: We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.


Assuntos
Glioblastoma , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Aprendizado de Máquina
6.
Neurooncol Adv ; 5(1): vdad034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152811

RESUMO

Background: Patients with glioblastoma (GBM) and high-grade glioma (HGG, World Health Organization [WHO] grade IV glioma) have a poor prognosis. Consequently, there is an unmet clinical need for accessible and noninvasively acquired predictive biomarkers of overall survival in patients. This study evaluated morphological changes in the brain separated from the tumor invasion site (ie, contralateral hemisphere). Specifically, we examined the prognostic value of widespread alterations of cortical thickness (CT) in GBM/HGG patients. Methods: We used FreeSurfer, applied with high-resolution T1-weighted MRI, to examine CT, evaluated prior to standard treatment with surgery and chemoradiation in patients (GBM/HGG, N = 162, mean age 61.3 years) and 127 healthy controls (HC; 61.9 years mean age). We then compared CT in patients to HC and studied patients' associated changes in CT as a potential biomarker of overall survival. Results: Compared to HC cases, patients had thinner gray matter in the contralesional hemisphere at the time of tumor diagnosis. patients had significant cortical thinning in parietal, temporal, and occipital lobes. Fourteen cortical parcels showed reduced CT, whereas in 5, it was thicker in patients' cases. Notably, CT in the contralesional hemisphere, various lobes, and parcels was predictive of overall survival. A machine learning classification algorithm showed that CT could differentiate short- and long-term survival patients with an accuracy of 83.3%. Conclusions: These findings identify previously unnoticed structural changes in the cortex located in the hemisphere contralateral to the primary tumor mass. Observed changes in CT may have prognostic value, which could influence care and treatment planning for individual patients.

7.
Neurooncol Adv ; 3(1): vdab176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988455

RESUMO

BACKGROUND: Gliomas exhibit widespread bilateral functional connectivity (FC) alterations that may be associated with tumor grade. Limited studies have examined the connection-level mechanisms responsible for these effects. Given the typically strong FC observed between mirroring/homotopic brain regions in healthy subjects, we hypothesized that homotopic connectivity (HC) is altered in low-grade and high-grade glioma patients and the extent of disruption is associated with tumor grade and predictive of overall survival (OS) in a cohort of de novo high-grade glioma (World Health Organization [WHO] grade 4) patients. METHODS: We used a mirrored FC-derived cortical parcellation to extract blood-oxygen-level-dependent (BOLD) signals and to quantify FC differences between homotopic pairs in normal-appearing brain in a retrospective cohort of glioma patients and healthy controls. RESULTS: Fifty-nine glioma patients (WHO grade 2, n = 9; grade 4 = 50; mean age, 57.5 years) and 30 healthy subjects (mean age, 65.9 years) were analyzed. High-grade glioma patients showed lower HC compared with low-grade glioma patients and healthy controls across several cortical locations and resting-state networks. Connectivity disruptions were also strongly correlated with hemodynamic lags between homotopic regions. Finally, in high-grade glioma patients with known survival times (n = 42), HC in somatomotor and dorsal attention networks were significantly correlated with OS. CONCLUSIONS: These findings demonstrate an association between tumor grade and HC alterations that may underlie global FC changes and provide prognostic information.

8.
Neuro Oncol ; 23(3): 412-421, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32789494

RESUMO

BACKGROUND: Glioblastoma (GBM; World Health Organization grade IV) assumes a variable appearance on MRI owing to heterogeneous proliferation and infiltration of its cells. As a result, the neurovascular units responsible for functional connectivity (FC) may exist within gross tumor boundaries, albeit with altered magnitude. Therefore, we hypothesize that the strength of FC within GBMs is predictive of overall survival. METHODS: We used predefined FC regions of interest (ROIs) in de novo GBM patients to characterize the presence of within-tumor FC observable via resting-state functional MRI and its relationship to survival outcomes. RESULTS: Fifty-seven GBM patients (mean age, 57.8 ±â€…13.9 y) were analyzed. Functionally connected voxels, not identifiable on conventional structural images, can be routinely found within the tumor mass and was not significantly correlated to tumor size. In patients with known survival times (n = 31), higher intranetwork FC strength within GBM tumors was associated with better overall survival even after accounting for clinical and demographic covariates. CONCLUSIONS: These findings suggest the possibility that functionally intact regions may persist within GBMs and that the extent to which FC is maintained may carry prognostic value and inform treatment planning.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Idoso , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Prognóstico
9.
Front Neurol ; 11: 819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849247

RESUMO

Background: Pre-surgical functional localization of eloquent cortex with task-based functional MRI (T-fMRI) is part of the current standard of care prior to resection of brain tumors. Resting state fMRI (RS-fMRI) is an alternative method currently under investigation. Here, we compare group level language localization using T-fMRI vs. RS-fMRI analyzed with 3D deep convolutional neural networks (3DCNN). Methods: We analyzed data obtained in 35 patients with brain tumors that had both language T-fMRI and RS-MRI scans during pre-surgical evaluation. The T-fMRI data were analyzed using conventional techniques. The language associated resting state network was mapped using a 3DCNN previously trained with data acquired in >2,700 normal subjects. Group level results obtained by both methods were evaluated using receiver operator characteristic analysis of probability maps of language associated regions, taking as ground truth meta-analytic maps of language T-fMRI responses generated on the Neurosynth platform. Results: Both fMRI methods localized major components of the language system (areas of Broca and Wernicke). Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. Conclusion: 3DCNN was able to accurately localize the language network. Additionally, 3DCNN performance was remarkably tolerant of a limited quantity of RS-fMRI data.

10.
PLoS One ; 15(7): e0236423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735611

RESUMO

BACKGROUND: Use of functional MRI (fMRI) in pre-surgical planning is a non-invasive method for pre-operative functional mapping for patients with brain tumors, especially tumors located near eloquent cortex. Currently, this practice predominantly involves task-based fMRI (T-fMRI). Resting state fMRI (RS-fMRI) offers an alternative with several methodological advantages. Here, we compare group-level analyses of RS-fMRI vs. T-fMRI as methods for language localization. PURPOSE: To contrast RS-fMRI vs. T-fMRI as techniques for localization of language function. METHODS: We analyzed data obtained in 35 patients who had both T-fMRI and RS-fMRI scans during the course of pre-surgical evaluation. The RS-fMRI data were analyzed using a previously trained resting-state network classifier. The T-fMRI data were analyzed using conventional techniques. Group-level results obtained by both methods were evaluated in terms of two outcome measures: (1) inter-subject variability of response magnitude and (2) sensitivity/specificity analysis of response topography, taking as ground truth previously reported maps of the language system based on intraoperative cortical mapping as well as meta-analytic maps of language task fMRI responses. RESULTS: Both fMRI methods localized major components of the language system (areas of Broca and Wernicke) although not with equal inter-subject consistency. Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. CONCLUSION: We demonstrate several advantages of classifier-based mapping of language representation in the brain. Language T-fMRI activated task-general (i.e., not language-specific) functional systems in addition to areas of Broca and Wernicke. In contrast, classifier-based analysis of RS-fMRI data generated maps confined to language-specific regions of the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Área de Broca/patologia , Glioblastoma/diagnóstico , Imageamento por Ressonância Magnética , Adulto , Idoso , Atenção/fisiologia , Mapeamento Encefálico/métodos , Área de Broca/diagnóstico por imagem , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Lateralidade Funcional/fisiologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Descanso/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 117(7): 3808-3818, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015137

RESUMO

The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cingulo-opercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala-cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.


Assuntos
Tonsila do Cerebelo/fisiologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Atenção , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Psiquiatria , Adulto Jovem
12.
Neuron ; 105(4): 742-758.e6, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31836321

RESUMO

The basal ganglia, thalamus, and cerebral cortex form an interconnected network implicated in many neurological and psychiatric illnesses. A better understanding of cortico-subcortical circuits in individuals will aid in development of personalized treatments. Using precision functional mapping-individual-specific analysis of highly sampled human participants-we investigated individual-specific functional connectivity between subcortical structures and cortical functional networks. This approach revealed distinct subcortical zones of network specificity and multi-network integration. Integration zones were systematic, with convergence of cingulo-opercular control and somatomotor networks in the ventral intermediate thalamus (motor integration zones), dorsal attention and visual networks in the pulvinar, and default mode and multiple control networks in the caudate nucleus. The motor integration zones were present in every individual and correspond to consistently successful sites of deep brain stimulation (DBS; essential tremor). Individually variable subcortical zones correspond to DBS sites with less consistent treatment effects, highlighting the importance of PFM for neurosurgery, neurology, and psychiatry.


Assuntos
Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
13.
Neuron ; 100(4): 977-993.e7, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30473014

RESUMO

The cerebellum contains the majority of neurons in the human brain and is unique for its uniform cytoarchitecture, absence of aerobic glycolysis, and role in adaptive plasticity. Despite anatomical and physiological differences between the cerebellum and cerebral cortex, group-average functional connectivity studies have identified networks related to specific functions in both structures. Recently, precision functional mapping of individuals revealed that functional networks in the cerebral cortex exhibit measurable individual specificity. Using the highly sampled Midnight Scan Club (MSC) dataset, we found the cerebellum contains reliable, individual-specific network organization that is significantly more variable than the cerebral cortex. The frontoparietal network, thought to support adaptive control, was the only network overrepresented in the cerebellum compared to the cerebral cortex (2.3-fold). Temporally, all cerebellar resting state signals lagged behind the cerebral cortex (125-380 ms), supporting the hypothesis that the cerebellum engages in a domain-general function in the adaptive control of all cortical processes.


Assuntos
Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos , Fatores de Tempo , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 115(12): 3156-3161, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507201

RESUMO

During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/anormalidades , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Masculino
15.
Neuroimaging Clin N Am ; 27(4): 621-633, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28985933

RESUMO

This article compares resting-state functional magnetic resonance (fMR) imaging with task fMR imaging for presurgical functional mapping of the sensorimotor (SM) region. Before tumor resection, 38 patients were scanned using both methods. The SM area was anatomically defined using 2 different software tools. Overlap of anatomic regions of interest with task activation maps and resting-state networks was measured in the SM region. A paired t-test showed higher overlap between resting-state maps and anatomic references compared with task activation when using a maximal overlap criterion. Resting state-derived maps are more comprehensive than those derived from task fMR imaging.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/cirurgia , Imageamento por Ressonância Magnética/métodos , Cuidados Pré-Operatórios/métodos , Córtex Sensório-Motor/anatomia & histologia , Humanos , Descanso , Córtex Sensório-Motor/diagnóstico por imagem
16.
Neuroimage ; 144(Pt B): 270-274, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27074495

RESUMO

We report on a new neuroimaging database, BALSA, that is a repository for extensively analyzed neuroimaging datasets from humans and nonhuman primates. BALSA is organized into two distinct sections. BALSA Reference is a curated repository of reference data accurately mapped to brain atlas surfaces and volumes, including various types of anatomically and functionally derived spatial maps as well as brain connectivity. BALSA Studies is a repository of extensively analyzed neuroimaging and neuroanatomical datasets associated with specific published studies, as voluntarily submitted by authors. It is particularly well suited for sharing of neuroimaging data as displayed in published figures. Uploading and downloading of data to BALSA involves 'scene' files that replicate how datasets appear in Connectome Workbench visualization software. Altogether, BALSA offers efficient access to richly informative datasets that are related to but transcend the images available in scientific publications.


Assuntos
Atlas como Assunto , Mapeamento Encefálico , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Neuroimagem , Primatas , Animais , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-28009020

RESUMO

BACKGROUND: The pathogenesis of human intracranial arteriovenous malformations (AVMs) is not well understood; this study aims to quantitatively assess cortical folding in patients with these lesions. METHODS: Seven adult participants, 4 male and 3 female, with unruptured, surgically unresectable intracranial AVMs were prospectively enrolled in the study, with a mean age of 42.1 years and Spetzler-Martin grade range of II-IV. High-resolution brain MRI T1 and T2 sequences were obtained. After standard preprocessing, segmentation and registration techniques, three measures of cortical folding, the depth difference index (DDI), coordinate distance index (CDI) and gyrification index (GI)), were calculated for the affected and unaffected hemispheres of each subject as well as a healthy control subject set. RESULTS: Of the three metrics, CDI, DDI and GI, used for cortical folding assessment, none demonstrated significant differences between the participants and previously studied healthy adults. There was a significant negative correlation between the DDI ratio between affected and unaffected hemispheres and AVM volume (correlation coefficient r = -0.74, p = 0.04). CONCLUSION: This study is the first to quantitatively assess human brain cortical folding in the presence of intracranial AVMs and no significant differences between AVM-affected versus unaffected hemispheres were found in a small dataset. We suggest longitudinal, larger human MRI-based cortical folding studies to assess whether AVMs are congenital lesions of vascular development or de novo, dynamic lesions.

18.
Neuroimage ; 125: 780-790, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26550941

RESUMO

We evaluated 22 measures of cortical folding, 20 derived from local curvature (curvature-based measures) and two based on other features (sulcal depth and gyrification index), for their capacity to distinguish between normal and aberrant cortical development. Cortical surfaces were reconstructed from 12 term-born control and 63 prematurely-born infants. Preterm infants underwent 2-4 MR imaging sessions between 27 and 42weeks postmenstrual age (PMA). Term infants underwent a single MR imaging session during the first postnatal week. Preterm infants were divided into two groups. One group (38 infants) had no/minimal abnormalities on qualitative assessment of conventional MR images. The second group (25 infants) consisted of infants with injury on conventional MRI at term equivalent PMA. For both preterm infant groups, all folding measures increased or decreased monotonically with increasing PMA, but only sulcal depth and gyrification index differentiated preterm infants with brain injury from those without. We also compared scans obtained at term equivalent PMA (36-42weeks) for all three groups. No curvature-based measured distinguished between the groups, whereas sulcal depth distinguished term control from injured preterm infants and gyrification index distinguished all three groups. When incorporating total cerebral volume into the statistical model, sulcal depth no longer distinguished between the groups, though gyrification index distinguished between all three groups and positive shape index distinguished between the term control and uninjured preterm groups. We also analyzed folding measures averaged over brain lobes separately. These results demonstrated similar patterns to those obtained from the whole brain analyses. Overall, though the curvature-based measures changed during this period of rapid cerebral development, they were not sensitive for detecting the differences in folding associated with brain injury and/or preterm birth. In contrast, gyrification index was effective in differentiating these groups.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino
19.
Nat Neurosci ; 18(12): 1832-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26571460

RESUMO

The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry.


Assuntos
Encéfalo/fisiologia , Redes Reguladoras de Genes/genética , Rede Nervosa/fisiologia , Transcriptoma/genética , Adulto , Animais , Humanos , Camundongos
20.
Neuroimage ; 109: 469-79, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25614973

RESUMO

We analyzed long-lasting alterations in brain morphometry associated with preterm birth using volumetric and surface-based analyses applied to children at age 7 years. Comparison of 24 children born very preterm (VPT) to 24 healthy term-born children revealed reductions in total cortical gray matter volume, white matter volume, cortical surface area and gyrification index. Regional cortical shape abnormalities in VPT children included the following: shallower anterior superior temporal sulci, smaller relative surface area in the inferior sensori-motor cortex and posterior superior temporal cortex, larger relative surface area and a cingulate sulcus that was shorter or more interrupted in medial frontoparietal cortex. These findings indicate a complex pattern of regional vulnerabilities in brain development that may contribute to the diverse and long-lasting neurobehavioral consequences that can occur after very premature birth.


Assuntos
Córtex Cerebral/patologia , Substância Cinzenta/patologia , Substância Branca/patologia , Córtex Cerebral/crescimento & desenvolvimento , Criança , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Lactente Extremamente Prematuro , Imageamento por Ressonância Magnética , Masculino , Substância Branca/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA