RESUMO
In the area of drug research, several computational drug repurposing studies have highlighted candidate repurposed drugs, as well as clinical trial studies that have tested/are testing drugs in different phases. To the best of our knowledge, the aggregation of the proposed lists of drugs by previous studies has not been extensively exploited towards generating a dynamic reference matrix with enhanced resolution. To fill this knowledge gap, we performed weight-modulated majority voting of the modes of action, initial indications and targeted pathways of the drugs in a well-known repository, namely the Drug Repurposing Hub. Our method, DReAmocracy, exploits this pile of information and creates frequency tables and, finally, a disease suitability score for each drug from the selected library. As a testbed, we applied this method to a group of neurodegenerative diseases (Alzheimer's, Parkinson's, Huntington's disease and Multiple Sclerosis). A super-reference table with drug suitability scores has been created for all four neurodegenerative diseases and can be queried for any drug candidate against them. Top-scored drugs for Alzheimer's Disease include agomelatine, mirtazapine and vortioxetine; for Parkinson's Disease, they include apomorphine, pramipexole and lisuride; for Huntington's, they include chlorpromazine, fluphenazine and perphenazine; and for Multiple Sclerosis, they include zonisamide, disopyramide and priralfimide. Overall, DReAmocracy is a methodology that focuses on leveraging the existing drug-related experimental and/or computational knowledge rather than a predictive model for drug repurposing, offering a quantified aggregation of existing drug discovery results to (1) reveal trends in selected tracks of drug discovery research with increased resolution that includes modes of action, targeted pathways and initial indications for the investigated drugs and (2) score new candidate drugs for repurposing against a selected disease.
Assuntos
Descoberta de Drogas , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Humanos , Descoberta de Drogas/métodos , Doenças Neurodegenerativas/tratamento farmacológicoRESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease and is the most common type of dementia. Although a considerably large amount of money has been invested in drug development for AD, no disease modifying treatment has been detected so far. In our previous work, we developed a computational method to highlight stage-specific candidate repurposed drugs against AD. In this study, we tested the effect of the top 13 candidate repurposed drugs that we proposed in our previous work in a severity stage-specific manner using an in vitro BACE1 assay and the effect of a top-ranked drug from the list of our previous work, tetrabenazine (TBZ), in the 5XFAD as an AD mouse model. From our in vitro screening, we detected 2 compounds (clomiphene citrate and Pik-90) that showed statistically significant inhibition against the activity of the BACE1 enzyme. The administration of TBZ at the selected dose and therapeutic regimen in 5XFAD in male and female mice showed no significant effect in behavioral tests using the Y-maze and the ELISA immunoassay of Aß40. To our knowledge, this is the first time the drug tetrabenazine has been tested in the 5XFAD mouse model of AD in a sex-stratified manner. Our results highlight 2 drugs (clomiphene citrate and Pik-90) from our previous computational work for further investigation.
RESUMO
We draw from the assumption that similarities between pathogens at both pathogen protein and host protein level, may provide the appropriate framework to identify and rank candidate drugs to be used against a specific pathogen. Vir2Drug is a drug repurposing tool that uses network-based approaches to identify and rank candidate drugs for a specific pathogen, combining information obtained from: (a) ranked pathogen-to-pathogen networks based on protein similarities between pathogens, (b) taxonomy distance between pathogens and (c) drugs targeting specific pathogen's and host proteins. The underlying pathogen networks are used to screen drugs by means of specific methodologies that account for either the host or pathogen's protein targets. Vir2Drug is a useful and yet informative tool for drug repurposing against known or unknown pathogens especially in periods where the emergence for repurposed drugs plays significant role in handling viral outbreaks, until reaching a vaccine. The web tool is available at: https://bioinformatics.cing.ac.cy/vir2drug, https://vir2drug.cing-big.hpcf.cyi.ac.cy.
Assuntos
Reposicionamento de Medicamentos , ProteínasRESUMO
Analgesic tolerance is a major problem in the clinic for the maintenance of opioid-induced long-term pain relief. Opioids with mixed activity on multiple opioid receptors promise reduced antinociceptive tolerance in preclinical studies, but these compounds typically show poor bioavailability upon oral, subcutaneous, intraperitoneal, or intravenous administration. We designed UTA1003 as a novel opioid that acts as a mu (MOP) and kappa (KOP) opioid receptor agonist and a partial agonist for delta (DOP) opioid receptor. In the present study, its antinociceptive effects, as well as its effects on antinociceptive tolerance and motor behaviour, were investigated in male rats. Acute antinociception was measured before (basal) and at different time points after subcutaneous injection of UTA1003 or morphine using the tail flick and hot plate assays. Various motor behavioural activities, including horizontal locomotion, rearing, and turning, were automatically measured in an open-field arena. The antinociceptive and behavioural effects of repeated administration of UTA1003 and morphine were determined over eight days. UTA1003 induced mild antinociceptive effects after acute administration but induced no tolerance after repeated treatment. Importantly, UTA1003 co-treatment with morphine prevented antinociceptive tolerance compared to morphine alone. UTA1003 showed less motor suppression than morphine in both acute and sub-chronic treatment regimens, while it did not affect morphine-induced motor suppression or hyper-excitation. Based on these activities, we speculate that UTA1003 crosses the blood-brain barrier after subcutaneous administration and, therefore, could be developed as a lead molecule to avoid opioid-induced antinociceptive tolerance and motor suppression. Further structural modifications to improve its antinociceptive effects, toxicity profile, and ADME parameters are nevertheless required.
RESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common type of dementia. With no disease-curing drugs available and an ever-growing AD-related healthcare burden, novel approaches for identifying therapies are needed. In this work, we propose stage-specific candidate repurposed drugs against AD by using a novel network-based method for drug repurposing against different stages of AD severity. For each AD stage, this approach a) ranks the candidate repurposed drugs based on a novel network-based score emerging from the weighted sum of connections in a network resembling the structural similarity with failed, approved or currently ongoing drugs b) re-ranks the candidate drugs based on functional, structural and a priori information according to a recently developed method by our group and c) checks and re-ranks for permeability through the Blood Brain Barrier (BBB). Overall, we propose for further experimental validation 10 candidate repurposed drugs for each AD stage comprising a set of 26 elite candidate repurposed drugs due to overlaps between the three AD stages. We applied our methodology in a retrospective way on the known clinical trial drugs till 2016 and we show that we were able to highly rank a drug that did enter clinical trials in the following year. We expect that our proposed network-based drug-repurposing methodology will serve as a paradigm for application for ranking candidate repurposed drugs in other brain diseases beyond AD.
RESUMO
University students represent a highly active group in terms of their social activity in the community and in the propagation of information on social media. We aimed to map the knowledge, attitudes, and perceptions of University students in Cyprus about severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Coronavirus disease 2019 (COVID-19) to guide targeted future measures and information campaigns. We used a cross-sectional online survey targeting all students in conventional, not distance-learning, programs in five major universities in the Republic of Cyprus. Students were invited to participate through the respective Studies and Student Welfare Office of each institution. The survey was made available in English and Greek on REDCap. Participation was voluntary and anonymous. The questionnaire was developed based on a consensus to cover the main factual information directed by official channels toward the general public in Cyprus at the time of the survey. In addition to sociodemographic information (N = 8), the self-administered questionnaire consisted of 19 questions, assessing the knowledge regarding the characteristics of SARS-CoV-2 and COVID-19, infection prevention and control measures (N = 10), perceptions related to COVID-19, for instance, whether strict travel measures are necessary (N = 4), and attitudes toward a hypothetical person infected (N = 2). Furthermore, participants were asked to provide their own assessment of their knowledge about COVID-19 and specifically with regard to the main symptoms and ways of transmission (N = 3). The number of students who completed the survey was 3,641 (41% studying Health/Life Sciences). Amongst them, 68.8% responded correctly to at least 60% of knowledge-related questions. Misconceptions were identified in 30%. Only 29.1% expressed a positive attitude toward a hypothetical person with COVID-19 without projecting judgment (9.2%) or blame (38%). Odds of expressing a positive attitude increased by 18% (95% CI 13-24%; p < 0.001) per unit increase in knowledge. Postgraduate level education was predictive of better knowledge (odds ratio (OR) 1.81; 95% CI 1.34-2.46; p < 0.001 among doctoral students] and positive attitude [OR 1.35; 95% CI 1.01-1.80; p = 0.04). In this study, we show that specific knowledge gaps and misconceptions exist among University students about SARS-CoV-2 and COVID-19 and their prevalence is associated with negative attitudes toward people with COVID-19. Our findings highlight the integrated nature of knowledge and attitude and suggest that improvements to the former could contribute to improvements in the latter.
Assuntos
COVID-19 , Atitude , Estudos Transversais , Chipre , Humanos , SARS-CoV-2 , Estudantes , UniversidadesRESUMO
Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As opium and opioids have been traditionally used as painkillers, the exact mechanisms of their adverse reactions over repeated use are multifactorial and not fully understood. Older adults suffer from cancer and non-cancer chronic pain more than younger adults, due to the physiological changes related to ageing and their reduced metabolic capabilities and thus show an increased number of adverse reactions to opioid drugs. All clinically used opioids are µ-opioid receptor agonists, and the major adverse effects are directly or potentially connected to this receptor. Multifunctional opioid ligands or peripherally restricted opioids may elicit fewer adverse effects, as shown in preclinical studies, but these results need reproducibility from further extensive clinical trials. The current review aims to overview various mechanisms involved in the adverse effects induced by opioids, to provide a better understanding of the underlying pathophysiology and, ultimately, to help develop an effective therapeutic strategy to better manage pain.
RESUMO
Efficient repetitive clinical use of morphine is limited by its numerous side effects, whereas analgesic tolerance necessitates subsequent increases in morphine dose to achieve adequate levels of analgesia. While many studies focused on analgesic tolerance, the effect of morphine dosing on non-analgesic effects has been overlooked. This study aimed to characterize morphine-induced behavior and the development and progression of morphine-induced behavioral tolerance. Adult male Sprague-Dawley rats were repetitively treated with subcutaneous morphine for 14 days in two dose groups (A: 5 mg/kg/day (b.i.d.) â 10 mg/kg/day; B: 10 mg/kg/day (b.i.d.) â 20 mg/kg/day). Motor behavior was assessed daily (distance traveled, speed, moving time, rearing, rotation) in an open-field arena, before and 30 min post-injections. Antinociception was measured using tail-flick and hot-plate assays. All measured parameters were highly suppressed in both dosing groups on the first treatment day, followed by a gradual manifestation of behavioral tolerance as the treatment progressed. Animals in the high-dose group showed increased locomotor activity after 10 days of morphine treatment. This excitatory phase converted to an inhibition of behavior when a higher morphine dose was introduced. We suggest that the excitatory locomotor effects of repetitive high-dose morphine exposure represent a signature of its behavioral and antinociceptive tolerance.
Assuntos
Analgésicos Opioides/farmacologia , Comportamento Animal/efeitos dos fármacos , Morfina/farmacologia , Atividade Motora/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Dor/tratamento farmacológico , Dor/fisiopatologia , Ratos , Ratos Sprague-DawleyRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is undeniably the most severe global health emergency since the 1918 Influenza outbreak. Depending on its evolutionary trajectory, the virus is expected to establish itself as an endemic infectious respiratory disease exhibiting seasonal flare-ups. Therefore, despite the unprecedented rally to reach a vaccine that can offer widespread immunization, it is equally important to reach effective prevention and treatment regimens for coronavirus disease 2019 (COVID-19). Contributing to this effort, we have curated and analyzed multi-source and multi-omics publicly available data from patients, cell lines and databases in order to fuel a multiplex computational drug repurposing approach. We devised a network-based integration of multi-omic data to prioritize the most important genes related to COVID-19 and subsequently re-rank the identified candidate drugs. Our approach resulted in a highly informed integrated drug shortlist by combining structural diversity filtering along with experts' curation and drug-target mapping on the depicted molecular pathways. In addition to the recently proposed drugs that are already generating promising results such as dexamethasone and remdesivir, our list includes inhibitors of Src tyrosine kinase (bosutinib, dasatinib, cytarabine and saracatinib), which appear to be involved in multiple COVID-19 pathophysiological mechanisms. In addition, we highlight specific immunomodulators and anti-inflammatory drugs like dactolisib and methotrexate and inhibitors of histone deacetylase like hydroquinone and vorinostat with potential beneficial effects in their mechanisms of action. Overall, this multiplex drug repurposing approach, developed and utilized herein specifically for SARS-CoV-2, can offer a rapid mapping and drug prioritization against any pathogen-related disease.
Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2/química , Antivirais/uso terapêutico , COVID-19/virologia , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidadeRESUMO
Treatment of breast cancer underwent extensive progress in recent years with molecularly targeted therapies. However, non-specific pharmaceutical approaches (chemotherapy) persist, inducing severe side-effects. Phytochemicals provide a promising alternative for breast cancer prevention and treatment. Specifically, resveratrol (res) is a plant-derived polyphenolic phytoalexin with potent biological activity but displays poor water solubility, limiting its clinical use. Here we have developed a strategy for delivering res using a newly synthesized nano-carrier with the potential for both diagnosis and treatment. Methods: Res-loaded nanoparticles were synthesized by the emulsion method using Pluronic F127 block copolymer and Vitamin E-TPGS. Nanoparticle characterization was performed by SEM and tunable resistive pulse sensing. Encapsulation Efficiency (EE%) and Drug Loading (DL%) content were determined by analysis of the supernatant during synthesis. Nanoparticle uptake kinetics in breast cancer cell lines MCF-7 and MDA-MB-231 as well as in MCF-10A breast epithelial cells were evaluated by flow cytometry and the effects of res on cell viability via MTT assay. Results: Res-loaded nanoparticles with spherical shape and a dominant size of 179±22 nm were produced. Res was loaded with high EE of 73±0.9% and DL content of 6.2±0.1%. Flow cytometry revealed higher uptake efficiency in breast cancer cells compared to the control. An MTT assay showed that res-loaded nanoparticles reduced the viability of breast cancer cells with no effect on the control cells. Conclusions: These results demonstrate that the newly synthesized nanoparticle is a good model for the encapsulation of hydrophobic drugs. Additionally, the nanoparticle delivers a natural compound and is highly effective and selective against breast cancer cells rendering this type of nanoparticle an excellent candidate for diagnosis and therapy of difficult to treat mammary malignancies.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Micelas , Resveratrol/uso terapêutico , Antineoplásicos/uso terapêutico , Feminino , Humanos , Células MCF-7RESUMO
The epidermal growth factor receptor (EGFR) is a key target in anticancer research, whose aberrant function in malignancies has been linked to severe irregularities in critical cellular processes, including cell cycle progression, proliferation, differentiation, and survival. EGFR mutant variants, either transmembrane or translocated to the mitochondria and/or the nucleus, often exhibit resistance to EGFR inhibitors. The ability to noninvasively image and quantify EGFR provides novel approaches in the detection, monitoring, and treatment of EGFR-related malignancies. The current study aimed to deliver a new theranostic agent that combines fluorescence imaging properties with EGFR inhibition. This was achieved via conjugation of an in-house-developed ((4-bromophenyl)amino)quinazoline inhibitor of mutant EGFR-TK, selected from a focused aminoquinazoline library, with a [Ru(bipyridine)3]2+ fluorophore. A triethyleneglycol-derived diamino linker featuring (+)-ionizable sites was employed to link the two functional moieties, affording two unprecedented Ru conjugates with 1:1 and 2:1 stoichiometry of aminoquinazoline to the Ru complex (mono-quinazoline-Ru-conjugate and bis-quinazoline-Ru-conjugate, respectively). The bis-quinazoline-Ru-conjugate, which retains an essential inhibitory activity, was found by fluorescence imaging to be effectively uptaken by Uppsala 87 malignant glioma (grade IV malignant glioma) cells. The fluorescence imaging study and a time-resolved fluorescence resonance energy transfer study indicated a specific subcellular distribution of the conjugate that coincides with that of a mitochondria-targeted dye, suggesting mitochondrial localization of the conjugate and potential association with mitochondria-translocated forms of EGFR. Mitochondrial localization was further documented by the specific concentration of the bis-quinazoline-Ru-conjugate in a mitochondrial isolation assay.
Assuntos
Neoplasias do Colo/patologia , Glioblastoma/patologia , Mitocôndrias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/química , Rutênio/química , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Extensão Extranodal , Corantes Fluorescentes , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Inibidores de Proteínas Quinases/química , Frações SubcelularesRESUMO
Adherence to allergen immunotherapy (AIT) is crucial for its efficacy. Subcutaneous AIT requires monthly visits (or more extended in the case of venom immunotherapy), while sublingual AIT is performed with a daily intake of allergen drops. Non-adherence to an AIT schedule and premature discontinuation are common problems. Various studies have shown controversial results on the rate of AIT adherence. The aim of this review is to describe the problem of non-adherence and to offer some evidence-based advice to allergologists on how to increase it. Better patient education at the beginning of treatment, sharing with patients the decision on which type of immunotherapy to select and showing sincere interest in their treatment concerns are some tips that can help to increase adherence. A well organized allergologist time schedule not only increases safety but also offers the possibility of close follow-up and an increase in patient loyalty.
Assuntos
Dessensibilização Imunológica/métodos , Cooperação do Paciente , Humanos , Educação de Pacientes como AssuntoRESUMO
This article contains supportive data related to a research article entitled "Age-dependent antinociception and behavioral inhibition by morphine" (Paul et al., 2018) [1]. Antinociceptive latencies of 8 and 24-week old rats were obtained from tail-flick and hot plate assays after morphine treatment. Motor behavioral effects were measured at different time-points using automated infrared tracking in an open-field arena. Residual morphine content in post-mortem tissues were measured 240â¯min post-treatment. Concurrent measurements of antinociception, motor behavior and residual morphine content in post-mortem tissues of 8-week and 24-week old morphine-treated rats provide an integrated assessment of age-related differences.
RESUMO
In current clinical practice, morphine is dosed in older patients based on patient-weight, with different calculations for adjustment. However, at present, neither clinical experience nor the literature offers a clear evidence base for the relationship between antinociception, behavioral effects and morphine administration in older patients. In this study, we compared the nociceptive response of 8 and 24â¯week old rats after subcutaneous administration of morphine per body weight and analyzed their behavior using an advanced multi-conditioning system. Residual morphine in all major tissues was determined. We observed prolonged morphine-induced antinociception in older rats compared to younger rats. Moreover, morphine significantly stimulated locomotor and rearing behavior 180â¯min after injection, which was significantly higher in the 8â¯week compared to 24â¯week old rats. Tissue analysis from animals extracted 240â¯min post-injection revealed a significantly higher concentration of residual morphine in the brains of older versus younger animals when standardized on tissue weight. However, this effect was not observed when residual morphine was standardized on protein content. Collectively, our data suggest that in older rats morphine exhibits higher antinociception and increased behavioral inhibition compared to younger animals. This effect is likely due to a significantly higher accumulation of morphine in the brain of older animals.
Assuntos
Envelhecimento/fisiologia , Analgésicos Opioides/farmacologia , Comportamento Animal/efeitos dos fármacos , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Fatores Etários , Analgésicos Opioides/farmacocinética , Animais , Índice de Massa Corporal , Peso Corporal , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Tolerância a Medicamentos , Injeções Subcutâneas , Locomoção/efeitos dos fármacos , Masculino , Morfina/farmacocinética , Ratos Sprague-DawleyRESUMO
Antinociceptive tolerance after repetitive administration of morphine severely limits its clinical use. Despite increased mechanistic understanding of morphine tolerance, little is known about the influence of dosing regimens in its development. We hypothesized that the starting dose of morphine, dosing frequency and dose increments, influence antinociception and the manifestation of antinociceptive tolerance in rats. Male rats were randomly divided into four groups with different intermittent starting-doses of daily morphine (b.i.d.) followed by different increments of single-dose morphine upon development of antinociceptive tolerance, for 2-3 weeks: 2.5 (b.i.d.)â5 â 10â15 mg/kg/day, 5 (b.i.d.)â10 mg/kg/day, 5 (b.i.d.)â15 mg/kg/day, 10 (b.i.d.)â20 mg/kg/day. Antinociception was assessed daily pre-treatment and at several time-points over 2 h post-administration, using tail-flick and hot-plate assays. Tolerance was defined as significant antinociceptive desensitization and was presented as significant reduction of the maximum and total antinociceptive efficacy upon morphine administration. Rats commenced on 2.5 mg/kg/day (b.i.d.) morphine developed tolerance faster than those started on 5 or 10 mg/kg/day (b.i.d.). Comparatively, higher starting and maintenance doses of morphine produced prolonged antinociception and delayed tolerance. Whereas, lower starting and maintenance doses of morphine produced less total antinociception during the course of treatment and did not delay the onset of tolerance, but require smaller dose-increments to reach antinociception after development of antinociceptive tolerance. These results suggest that morphine starting dose, dosing frequency, increments and timing determine the manifestation of antinociceptive tolerance and extent of antinociception. In addition, our results also highlight the need for generally standardized and validated assay protocols and procedures to compare different studies, as a prerequisite to translate pre-clinical results into the clinic.
Assuntos
Analgésicos/farmacologia , Morfina/farmacologia , Limiar da Dor/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Tolerância a Medicamentos , Masculino , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de TempoRESUMO
Depression is one of the leading causes of disability and a significant health-concern worldwide. Much of our current understanding on the pathogenesis of depression and the pharmacology of antidepressant drugs is based on pre-clinical models. Three of the most popular stress-based rodent models are the forced swimming test, the chronic mild stress paradigm and the learned helplessness model. Despite their recognizable advantages and limitations, they are associated with an immense variability due to the high number of design parameters that define them. Only few studies have reported how minor modifications of these parameters affect the model phenotype. Thus, the existing variability in how these models are used has been a strong barrier for drug development as well as benchmark and evaluation of these pre-clinical models of depression. It also has been the source of confusing variability in the experimental outcomes between research groups using the same models. In this review, we summarize the known variability in the experimental protocols, identify the main and relevant parameters for each model and describe the variable values using characteristic examples. Our view of depression and our efforts to discover novel and effective antidepressants is largely based on our detailed knowledge of these testing paradigms, and requires a sound understanding around the importance of individual parameters to optimize and improve these pre-clinical models.