Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Front Aging Neurosci ; 16: 1420290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38934017

RESUMO

Background: Changes in everyday functioning constitute a clinically meaningful outcome, even in the early stages of Alzheimer's disease. Performance-based assessments of everyday functioning might help uncover these early changes. We aimed to investigate how changes over time in everyday functioning relate to tau and amyloid in cognitively unimpaired older adults. Methods: Seventy-six cognitively unimpaired participants (72 ± 6 years old, 61% female) completed multiple Harvard Automated Phone Task (APT) assessments over 2.0 ± 0.9 years. The Harvard APT consists of three tasks, performed through an automated phone system, in which participants refill a prescription (APT-Script), select a new primary care physician (APT-PCP), and transfer money to pay a bill (APT-Bank). Participants underwent Pittsburgh compound-B and flortaucipir positron emission tomography scans at baseline. We computed distribution volume ratios for a cortical amyloid aggregate and standardized uptake volume ratios for medial temporal and neocortical tau regions. In separate linear mixed models, baseline amyloid by time and tau by time interactions were used to predict longitudinal changes in performance on the Harvard APT tasks. Three-way amyloid by tau by time interactions were also investigated. Lastly, we examined associations between tau and change in Harvard APT scores in exploratory voxel-wise whole-brain analyses. All models were adjusted for age, sex, and education. Results: Amyloid [unstandardized partial regression coefficient estimate (ß) = -0.007, 95% confidence interval (95% CI) = (-0.013, -0.001)], and medial temporal tau [ß = -0.013, 95% CI = (-0.022, -0.004)] were associated with change over time in years on APT-PCP only, i.e., higher baseline amyloid and higher baseline tau were associated with steeper rate of decline of APT-PCP. Voxel-wise analyses showed widespread associations between tau and change in APT-PCP scores over time. Conclusion: Even among cognitively unimpaired older adults, changes over time in the performance of cognitively complex everyday activities relate to cortical amyloid and widespread cerebral tau burden at baseline. These findings support the link between Alzheimer's disease pathology and function and highlight the importance of measuring everyday functioning in preclinical disease stages.

2.
Nat Commun ; 15(1): 4809, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844444

RESUMO

The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.


Assuntos
Envelhecimento , Doença de Alzheimer , Percepção Olfatória , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Feminino , Proteínas tau/metabolismo , Proteínas tau/genética , Masculino , Idoso , Percepção Olfatória/fisiologia , Envelhecimento/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Idoso de 80 Anos ou mais , Condutos Olfatórios/metabolismo , Condutos Olfatórios/diagnóstico por imagem , Olfato/fisiologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Lobo Temporal/metabolismo , Lobo Temporal/diagnóstico por imagem , Pessoa de Meia-Idade
3.
Nat Aging ; 4(5): 625-637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664576

RESUMO

Autopsy studies indicated that the locus coeruleus (LC) accumulates hyperphosphorylated tau before allocortical regions in Alzheimer's disease. By combining in vivo longitudinal magnetic resonance imaging measures of LC integrity, tau positron emission tomography imaging and cognition with autopsy data and transcriptomic information, we examined whether LC changes precede allocortical tau deposition and whether specific genetic features underlie LC's selective vulnerability to tau. We found that LC integrity changes preceded medial temporal lobe tau accumulation, and together these processes were associated with lower cognitive performance. Common gene expression profiles between LC-medial temporal lobe-limbic regions map to biological functions in protein transport regulation. These findings advance our understanding of the spatiotemporal patterns of initial tau spreading from the LC and LC's selective vulnerability to Alzheimer's disease pathology. LC integrity measures can be a promising indicator for identifying the time window when individuals are at risk of disease progression and underscore the importance of interventions mitigating initial tau spread.


Assuntos
Doença de Alzheimer , Cognição , Locus Cerúleo , Tomografia por Emissão de Pósitrons , Proteínas tau , Locus Cerúleo/metabolismo , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Cognição/fisiologia , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Lobo Temporal/metabolismo , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia
4.
Commun Med (Lond) ; 4(1): 65, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580832

RESUMO

BACKGROUND: Unawareness is a behavioral condition characterized by a lack of self-awareness of objective memory decline. In the context of Alzheimer's Disease (AD), unawareness may develop in predementia stages and contributes to disease severity and progression. Here, we use in-vivo multi-modal neuroimaging to profile the brain phenotype of individuals presenting altered self-awareness of memory during aging. METHODS: Amyloid- and tau-PET (N = 335) and resting-state functional MRI (N = 713) imaging data of individuals from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4)/Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) Study were used in this research. We applied whole-brain voxel-wise and region-of-interest analyses to characterize the cortical intersections of tau, amyloid, and functional connectivity networks underlying unawareness in the aging brain compared to aware, complainer and control groups. RESULTS: Individuals with unawareness present elevated amyloid and tau burden in midline core regions of the default mode network compared to aware, complainer or control individuals. Unawareness is characterized by an altered network connectivity pattern featuring hyperconnectivity in the medial anterior prefrontal cortex and posterior occipito-parietal regions co-locating with amyloid and tau deposition. CONCLUSIONS: Unawareness is an early behavioral biomarker of AD pathology. Failure of the self-referential system in unawareness of memory decline can be linked to amyloid and tau burden, along with functional network connectivity disruptions, in several medial frontal and parieto-occipital areas of the human brain.


Lack of self-awareness of cognitive changes, such as memory decline, occurs in people who later go on to develop Alzheimer's disease. In the present study, we investigated various characteristics of the brains of people who were unaware they were experiencing memory loss and likely to develop Alzheimer's disease due to their age. We identified individuals with low performance in memory tests and a lack of sense of their memory decline. Compared to aware individuals, they had more deposits of proteins known to be present at higher levels in people with Alzheimer's disease. The results of this investigation suggest that unawareness of memory decline is an early behavioral sign that a person might develop Alzheimer's disease. This knowledge might enable such people to be more easily identified in the future, and treatments to be started sooner.

5.
Sci Data ; 11(1): 256, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424112

RESUMO

The human brain is an extremely complex network of structural and functional connections that operate at multiple spatial and temporal scales. Investigating the relationship between these multi-scale connections is critical to advancing our comprehension of brain function and disorders. However, accurately predicting structural connectivity from its functional counterpart remains a challenging pursuit. One of the major impediments is the lack of public repositories that integrate structural and functional networks at diverse resolutions, in conjunction with modular transcriptomic profiles, which are essential for comprehensive biological interpretation. To mitigate this limitation, our contribution encompasses the provision of an open-access dataset consisting of derivative matrices of functional and structural connectivity across multiple scales, accompanied by code that facilitates the investigation of their interrelations. We also provide additional resources focused on neuro-genetic associations of module-level network metrics, which present promising opportunities to further advance research in the field of network neuroscience, particularly concerning brain disorders.


Assuntos
Mapeamento Encefálico , Encéfalo , Vias Neurais , Humanos , Imageamento por Ressonância Magnética , Perfilação da Expressão Gênica
7.
J Psychiatr Res ; 171: 230-237, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316103

RESUMO

Animal models suggest that experiencing high-stress levels induces changes in amygdalar circuitry and gene expression. In humans, combat exposure has been shown to alter amygdalar responsivity and connectivity, but abnormalities have been indicated to normalize at least partially upon the termination of stress exposure. In contrast, other evidence suggests that combat exposure continues to exert influence on exposed individuals well beyond deployment and homecoming, as indicated by longitudinal psychosocial evidence from veterans, and observation of greater health decline in veterans late in life. Accordingly, the experience of combat stress early in life may affect amygdalar responsivity late in life, a possibility requiring careful consideration of the confounding effects of aging, genetic factors, and symptoms of post-traumatic stress disorder. Here, we investigated amygdalar responsivity in a unique sample of 16 male monozygotic (MZ) twin pairs in their sixties, where one but not the other sibling had been exposed to combat stress in early adulthood. Forty years after combat experience, a generally blunted amygdalar response was observed in combat-exposed veterans compared to their non-exposed twin siblings. Spatial associations between these phenotypical changes and patterns of gene expression in the brain were found for genes involved in the synaptic organization and chromatin structure. Protein-protein interactions among the set of identified genes pointed to histone modification mechanisms. We conclude that exposure to combat stress early in life continues to impact brain function beyond the termination of acute stress and appears to exert prolonged effects on amygdalar function later in life via neurogenetic mechanisms.


Assuntos
Distúrbios de Guerra , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Adulto , Gêmeos Monozigóticos/genética , Encéfalo , Veteranos/psicologia
8.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123362

RESUMO

It is poorly known how Aß and tau accumulations associate at the spatiotemporal level in the in vivo human brain to impact cognitive changes in older adults prior to AD symptoms onset. In this study, we used a graph theory-based spatiotemporal analysis to characterize the cortical patterns of Aß and tau deposits and their relationship with cognitive changes in the Harvard Aging Brain Study (HABS) cohort. We found that the temporal accumulations of interlinked Aß and tau pathology display distinctive spatiotemporal correlations associated with early cognitive decline. Notably, we observed that baseline Aß deposits-Thal amyloid phase Ⅱ-related to future increase of tau deposits, Braak stages Ⅰ-Ⅳ, both displaying linkage to the decline in multi-domain cognitive scores. We also found unimodal tau-to-tau and cognitive impairment associations in broad areas of Braak stages Ⅰ-Ⅳ. The unimodal Aß-to-Aß progressions were not associated with cognitive changes. Our results revealed a multifaceted correlation of the spatiotemporal Aß and tau associations with cognitive decline over time, in which tau-to-tau and tau-Aß interactions, and not Aß independently, might be critical contributors to clinical trajectories toward AD in older adults.


Assuntos
Doença de Alzheimer , Amiloide , Disfunção Cognitiva , Proteínas tau , Idoso , Humanos , Envelhecimento , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides , Cognição , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo
9.
Netw Neurosci ; 7(3): 1022-1033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781148

RESUMO

The neuroscience of creativity seeks to disentangle the complex brain processes that underpin the generation of novel ideas. Neuroimaging studies of functional connectivity, particularly functional magnetic resonance imaging (fMRI), have revealed individual differences in brain network organization associated with creative ability; however, much of the extant research is limited to laboratory-based divergent thinking measures. To overcome these limitations, we compare functional brain connectivity in a cohort of creative experts (n = 27) and controls (n = 26) and examine links with creative behavior. First, we replicate prior findings showing reduced connectivity in visual cortex related to higher creative performance. Second, we examine whether this result is driven by integrated or segregated connectivity. Third, we examine associations between functional connectivity and vivid distal simulation separately in creative experts and controls. In accordance with past work, our results show reduced connectivity to the primary visual cortex in creative experts at rest. Additionally, we observe a negative association between distal simulation vividness and connectivity to the lateral visual cortex in creative experts. Taken together, these results highlight connectivity profiles of highly creative people and suggest that creative thinking may be related to, though not fully redundant with, the ability to vividly imagine the future.

10.
Commun Med (Lond) ; 3(1): 106, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528163

RESUMO

INTRODUCTION: Non-invasive diffusion-weighted imaging (DWI) to assess brain microstructural changes via cortical mean diffusivity (cMD) has been shown to be cross-sectionally associated with tau in cognitively normal older adults, suggesting that it might be an early marker of neuronal injury. Here, we investigated how regional cortical microstructural changes measured by cMD are related to the longitudinal accumulation of regional tau as well as to episodic memory decline in cognitively normal individuals harboring amyloid pathology. METHODS: 122 cognitively normal participants from the Harvard Aging Brain Study underwent DWI, T1w-MRI, amyloid and tau PET imaging, and Logical Memory Delayed Recall (LMDR) assessments. We assessed whether the interaction of baseline amyloid status and cMD (in entorhinal and inferior-temporal cortices) was associated with longitudinal regional tau accumulation and with longitudinal LMDR using separate linear mixed-effects models. RESULTS: We find a significant interaction effect of the amyloid status and baseline cMD in predicting longitudinal tau in the entorhinal cortex (p = 0.044) but not the inferior temporal lobe, such that greater baseline cMD values predicts the accumulation of entorhinal tau in amyloid-positive participants. Moreover, we find a significant interaction effect of the amyloid status and baseline cMD in the entorhinal cortex (but not inferior temporal cMD) in predicting longitudinal LMDR (p < 0.001), such that baseline entorhinal cMD predicts the episodic memory decline in amyloid-positive participants. CONCLUSIONS: The combination of amyloidosis and elevated cMD in the entorhinal cortex may help identify individuals at short-term risk of tau accumulation and Alzheimer's Disease-related episodic memory decline, suggesting utility in clinical trials.


People with Alzheimer's disease have problems with their memory and ability to acquire and process knowledge. Understanding the earliest brain changes leading to these problems helps identify those likely to develop Alzheimer's disease early in the disease process. This study used a marker that measures the mobility of water in the brain to investigate how these changes can predict development of a protein named tau and changes in people's memory. The participants showed no signs of memory impairment at the beginning of the study, but some developed memory decline during follow-up. Greater mobility of water in certain brain areas predicted future increase in tau and decline in memory, indicating this measure could be used to identify people at risk of developing Alzheimer's disease.

11.
Creat Res J ; 35(3): 471-480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576950

RESUMO

Studies suggest that internally oriented cognitive processes are central to creativity. Here, we distinguish between intentional and unintentional forms of mind wandering and explore their behavioral and neural correlates. We used a sample of 155 healthy adults from the mind-brain-body dataset, all of whom completed resting-state fMRI scans and trait-level measures of mind wandering. We analyzed intentional and unintentional mind wandering tendencies using self-report measures. Next, we explored the relationship between mind wandering tendencies and creativity, as measured by a divergent thinking task. Finally, we describe patterns of resting-state network connectivity associated with mind wandering, using graph theory analysis. At the behavioral level, results showed a significant positive association between creativity and both intentional and unintentional mind wandering. Neuroimaging analysis revealed higher weighted degree connectivity associated with both forms of mind wandering, implicating core regions of the default network and the left temporal pole. We observed topological connectivity differences within the default network: intentional mind wandering was associated with degree connectivity in posterior regions, whereas unintentional mind wandering showed greater involvement of prefrontal areas. Overall, the findings highlight patterns of resting-state network connectivity associated with intentional and unintentional mind wandering, and provide novel evidence of a link between mind wandering and creativity.

12.
Biol Psychiatry ; 94(10): 804-813, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088169

RESUMO

BACKGROUND: There is little consensus and controversial evidence on anatomical alterations in the brains of people with autism spectrum disorder (ASD), due in part to the large heterogeneity present in ASD, which in turn is a major drawback for developing therapies. One strategy to characterize this heterogeneity in ASD is to cluster large-scale functional brain connectivity profiles. METHODS: A subtyping approach based on consensus clustering of functional brain connectivity patterns was applied to a population of 657 autistic individuals with quality-assured neuroimaging data. We then used high-resolution gene transcriptomic data to characterize the molecular mechanism behind each subtype by performing enrichment analysis of the set of genes showing a high spatial similarity with the profiles of functional connectivity alterations between each subtype and a group of typically developing control participants. RESULTS: Two major stable subtypes were found: subtype 1 exhibited hypoconnectivity (less average connectivity than typically developing control participants) and subtype 2, hyperconnectivity. The 2 subtypes did not differ in structural imaging metrics in any of the analyzed regions (68 cortical and 14 subcortical) or in any of the behavioral scores (including IQ, Autism Diagnostic Interview, and Autism Diagnostic Observation Schedule). Finally, only subtype 2, comprising about 43% of ASD participants, led to significant enrichments after multiple testing corrections. Notably, the dominant enrichment corresponded to excitation/inhibition imbalance, a leading well-known primary mechanism in the pathophysiology of ASD. CONCLUSIONS: Our results support a link between excitation/inhibition imbalance and functional connectivity alterations, but only in one ASD subtype, overall characterized by brain hyperconnectivity and major alterations in somatomotor and default mode networks.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem
13.
Biomedicines ; 11(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831109

RESUMO

BACKGROUND: We aimed to characterize subtypes of synucleinopathies using a clustering approach based on cognitive and other nonmotor data and to explore structural and functional magnetic resonance imaging (MRI) brain differences between identified clusters. METHODS: Sixty-two patients (n = 6 E46K-SNCA, n = 8 dementia with Lewy bodies (DLB) and n = 48 idiopathic Parkinson's disease (PD)) and 37 normal controls underwent nonmotor evaluation with extensive cognitive assessment. Hierarchical cluster analysis (HCA) was performed on patients' samples based on nonmotor variables. T1, diffusion-weighted, and resting-state functional MRI data were acquired. Whole-brain comparisons were performed. RESULTS: HCA revealed two subtypes, the mild subtype (n = 29) and the severe subtype (n = 33). The mild subtype patients were slightly impaired in some nonmotor domains (fatigue, depression, olfaction, and orthostatic hypotension) with no detectable cognitive impairment; the severe subtype patients (PD patients, all DLB, and the symptomatic E46K-SNCA carriers) were severely impaired in motor and nonmotor domains with marked cognitive, visual and bradykinesia alterations. Multimodal MRI analyses suggested that the severe subtype exhibits widespread brain alterations in both structure and function, whereas the mild subtype shows relatively mild disruptions in occipital brain structure and function. CONCLUSIONS: These findings support the potential value of incorporating an extensive nonmotor evaluation to characterize specific clinical patterns and brain degeneration patterns of synucleinopathies.

14.
Biol Psychiatry Glob Open Sci ; 2(4): 411-420, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36324658

RESUMO

Background: Obsessive-compulsive symptoms (OCSs) during childhood predispose to obsessive-compulsive disorder and have been associated with changes in brain circuits altered in obsessive-compulsive disorder samples. OCSs may arise from disturbed glutamatergic neurotransmission, impairing cognitive oscillations and promoting overstable functional states. Methods: A total of 227 healthy children completed the Obsessive Compulsive Inventory-Child Version and underwent a resting-state functional magnetic resonance imaging examination. Genome-wide data were obtained from 149 of them. We used a graph theory-based approach and characterized associations between OCSs and dynamic functional connectivity (dFC). dFC evaluates fluctuations over time in FC between brain regions, which allows characterizing regions with stable connectivity patterns (attractors). We then compared the spatial similarity between OCS-dFC correlation maps and mappings of genetic expression across brain regions to identify genes potentially associated with connectivity changes. In post hoc analyses, we investigated which specific single nucleotide polymorphisms of these genes moderated the association between OCSs and patterns of dFC. Results: OCSs correlated with decreased attractor properties in the left ventral putamen and increased attractor properties in (pre)motor areas and the left hippocampus. At the specific symptom level, increased attractor properties in the right superior parietal cortex correlated with ordering symptoms. In the hippocampus, we identified two single nucleotide polymorphisms in glutamatergic neurotransmission genes (GRM7, GNAQ) that moderated the association between OCSs and attractor features. Conclusions: We provide evidence that in healthy children, the association between dFC changes and OCSs may be mapped onto brain circuits predicted by prevailing neurobiological models of obsessive-compulsive disorder. Moreover, our findings support the involvement of glutamatergic neurotransmission in such brain network changes.

15.
Schizophrenia (Heidelb) ; 8(1): 76, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151201

RESUMO

Cognitive impairment, and working memory deficits in particular, are debilitating, treatment-resistant aspects of schizophrenia. Dysfunction of brain network hubs, putatively related to altered neurodevelopment, is thought to underlie the cognitive symptoms associated with this illness. Here, we used weighted degree, a robust graph theory metric representing the number of weighted connections to a node, to quantify centrality in cortical hubs in 29 patients with schizophrenia and 29 age- and gender-matched healthy controls and identify the critical nodes that underlie working memory performance. In both patients and controls, elevated weighted degree in the default mode network (DMN) was generally associated with poorer performance (accuracy and reaction time). Higher degree in the ventral attention network (VAN) nodes in the right superior temporal cortex was associated with better performance (accuracy) in patients. Degree in several prefrontal and parietal areas was associated with cognitive performance only in patients. In regions that are critical for sustained attention, these correlations were primarily driven by between-network connectivity in patients. Moreover, a cross-validated prediction analysis showed that a linear model using a summary degree score can be used to predict an individual's working memory accuracy (r = 0.35). Our results suggest that schizophrenia is associated with dysfunctional hubs in the cortical systems supporting internal and external cognition and highlight the importance of topological network analysis in the search of biomarkers for cognitive deficits in schizophrenia.

16.
PLoS Comput Biol ; 18(9): e1010431, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054198

RESUMO

The human brain generates a rich repertoire of spatio-temporal activity patterns, which support a wide variety of motor and cognitive functions. These patterns of activity change with age in a multi-factorial manner. One of these factors is the variations in the brain's connectomics that occurs along the lifespan. However, the precise relationship between high-order functional interactions and connnectomics, as well as their variations with age are largely unknown, in part due to the absence of mechanistic models that can efficiently map brain connnectomics to functional connectivity in aging. To investigate this issue, we have built a neurobiologically-realistic whole-brain computational model using both anatomical and functional MRI data from 161 participants ranging from 10 to 80 years old. We show that the differences in high-order functional interactions between age groups can be largely explained by variations in the connectome. Based on this finding, we propose a simple neurodegeneration model that is representative of normal physiological aging. As such, when applied to connectomes of young participant it reproduces the age-variations that occur in the high-order structure of the functional data. Overall, these results begin to disentangle the mechanisms by which structural changes in the connectome lead to functional differences in the ageing brain. Our model can also serve as a starting point for modeling more complex forms of pathological ageing or cognitive deficits.


Assuntos
Conectoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Criança , Cognição , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adulto Jovem
17.
Psychiatry Res Neuroimaging ; 326: 111533, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055038

RESUMO

Within stress-diathesis models, adverse life experiences (ALEs) increase the susceptibility to functional neurological symptoms through neuroplasticity effects. We aimed to characterize potential genetic influences on this relationship in 20 patients with functional seizures. Questionnaires, structural MRIs and Allen Human Brain Atlas gene expression information were used to probe the intersection of symptom severity (Somatoform Dissociation Questionnaire, SDQ-20), ALE burden, and gray matter volumes. SDQ-20 scores positively correlated with sexual trauma, emotional neglect, and threat to life experiences. Higher SDQ-20 scores related to lower bilateral insula, left orbitofrontal, right amygdala, and perigenual/posterior cingulate volumes. Higher sexual trauma burden correlated with lower right posterior insula and putamen volumes; higher emotional neglect related to lower bilateral insula/right amygdala volumes. Findings in left insula/ventral precentral gyrus (SDQ-20), right insula/putamen (sexual trauma), and right amygdala (emotional neglect) held when controlling for comorbid psychopathology. At the intersection of symptom severity and sexual trauma volumetric findings, genes overrepresented in adrenergic, serotonergic, and oxytocin receptor signaling as well as in cortical and amygdala development were spatially correlated. In conclusion, ALEs and symptom severity were associated with gray matter volumes in cingulo-insular and amygdala areas, spatially overlapping with expression patterns of genes involved in stress-related signaling and neurodevelopment.

18.
Sci Transl Med ; 14(655): eabn7273, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895837

RESUMO

A key hallmark of Alzheimer's disease (AD) pathology is the intracellular accumulation of tau protein in the form of neurofibrillary tangles across large-scale networks of the human brain cortex. Currently, it is still unclear how tau accumulates within specific cortical systems and whether in situ genetic traits play a role in this circuit-based propagation progression. In this study, using two independent cohorts of cognitively normal older participants, we reveal the brain network foundation of tau spreading and its association with using high-resolution transcriptomic genetic data. We observed that specific connectomic and genetic gradients exist along the tau spreading network. In particular, we identified 577 genes whose expression is associated with the spatial spreading of tau. Within this set of genes, APOE and glutamatergic synaptic genes, such as SLC1A2, play a central role. Thus, our study characterizes neurogenetic topological vulnerabilities in distinctive brain circuits of tau spreading and suggests that drug development strategies targeting the gradient expression of this set of genes should be explored to help reduce or prevent pathological tau accumulation.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(15): e2113641119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380901

RESUMO

The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-ß and tau pathology in preclinical Alzheimer's disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-ß and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain's functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.


Assuntos
Doença de Alzheimer , Encéfalo , Conectoma , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Heterozigoto , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/genética , Memória Episódica , Tomografia por Emissão de Pósitrons/métodos , Presenilina-1/genética , Proteínas tau/metabolismo
20.
Neurobiol Dis ; 167: 105671, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231560

RESUMO

Small vessel disease (SVD) is a disorder that causes vascular lesions in the entire parenchyma of the human brain. At present, it is not well understood how primary and secondary damage interact to give rise to the complex scenario of white matter (WM) and grey matter (GM) lesions. Using novel cross-sectional and longitudinal connectomic approaches, we unveil the bidirectional nature of GM and WM changes, that is, primary cortical neurodegeneration that leads to secondary alterations in vascular border zones, and WM lesions that lead to secondary neurodegeneration in cortical projecting areas. We found this GM-WM interaction to be essential for executive cognitive performance. Moreover, we also observed that the interlocked degeneration of GM and WM over time associates with prototypical expression levels of genes potentially linked to SVD. Among these connectomic-genetic intersections, we found that the Androgen Receptor (AR) gene, is a particularly central candidate gene that might confer key vulnerability for brain lesion development in SVD. In conclusion, this study advances in the understanding of the bidirectional relationships between GM and WM lesions, primary and secondary vascular neurodegeneration, and sheds light on the genetic signatures of SVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Conectoma , Substância Branca , Encéfalo , Doenças de Pequenos Vasos Cerebrais/genética , Estudos Transversais , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA