Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 350: 141039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147923

RESUMO

Sulfonamides are among the widespread bacterial antibiotics. Despite this, their quick emergence constitutes a serious problem for ecosystems and human health. Therefore, there is an increased interest in developing relevant detection method for antibiotics in different matrices. In this work, a straightforward, green, and cost-effective protocol was proposed for the preparation of a selective molecularly imprinted membrane (MIM) of sulfamethoxazole (SMX), a commonly used antibiotic. Thus, cellulose acetate was used as the functional polymer, while polyethylene glycol served as a pore-former. The developed MIM was successfully characterized through scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The MIM was used as a sensing platform in conjunction with a smartphone for optical readout, enabling on-site, selective, and highly sensitive detection of SMX. In this way, a satisfactory imprinting factor of around 3.6 and a limit of detection of 2 ng mL-1 were reached after applying response surface methodologies, including Box-Behnken and central composite designs. Besides, MIM demonstrated its applicability for the accurate and selective detection of SMX in river waters, wastewater, and drugs. Additionally, the MIM was shown to be a valuable sorbent in a solid-phase extraction protocol, employing a spin column setup that offered rapid and reproducible results. Furthermore, the developed sensing platform exhibited notable regeneration properties over multiple cycles and long shelf-life in different storage conditions. The newly developed methodology is of crucial importance to overcome the limitations of classical imprinting polymers. Furthermore, the smartphone-based platform was used to surpass the typically expensive and complicated methods of detection.


Assuntos
Antibacterianos , Impressão Molecular , Humanos , Impressão Molecular/métodos , Sulfametoxazol , Espectroscopia de Infravermelho com Transformada de Fourier , Ecossistema , Extração em Fase Sólida/métodos , Polímeros/química , Adsorção
2.
Foods ; 12(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37174286

RESUMO

There is an increasing interest in food science for high-quality natural products with a distinct geographical origin, such as saffron. In this work, the excitation-emission matrix (EEM) and synchronous fluorescence were used for the first time to geographically discriminate between Moroccan saffron from Taroudant, Ouarzazate, and Azilal. Moreover, to differentiate between Afghan, Iranian, and Moroccan saffron, a unique fingerprint was assigned to each sample by visualizing the EEM physiognomy. Moreover, principal component analysis (LDA) and linear discriminant analysis (LDA) were successfully applied to classify the synchronous spectra of samples. High fluorescence intensities were registered for Ouarzazate and Taroudant saffron. Yet, the Azilal saffron was distinguished by its low intensities. Furthermore, Moroccan, Afghan, and Iranian saffron were correctly assigned to their origins using PCA and LDA for different offsets (Δλ) (20-250 nm) such that the difference in the fluorescence composition of the three countries' saffron was registered in the following excitation/emission ranges: 250-325 nm/300-480 nm and 360-425 nm/500-550 nm. These regions are characterized by the high polyphenolic content of Moroccan saffron and the important composition of Afghan saffron, including vitamins and terpenoids. However, weak intensities of these compounds were found in Iranian saffron. Furthermore, a substantial explained variance (97-100% for PC1 and PC2) and an important classification rate (70-90%) were achieved. Thus, the non-destructive applied methodology of discrimination was rapid, straightforward, reliable, and accurate.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120574, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34772633

RESUMO

A new eco-friendly, rapid, and sensitive spectrophotometric method was developed to determine small quantities of nitrite, based on a diazotization mechanism. In an acidic solution, sulfathiazole was first diazotized with sodium nitrite, followed by adding phosphate buffer to form a yellow-colored compound, which showed maximum absorption at 450 nm, without the need for the addition of coupling agents such as N-(1-naphthyl) ethylenediamine. The effects of reagents amount and the optimal experimental conditions were examined by Central composite design. The simplified method presented a wide linear range of nitrite between 0.091 µg mL-1 and 1.47 µg mL-1, a sensitivity of 0.447 Abs mL µg-1, a determination coefficient of 0.998, and a low limit of detection of 0.053 µg mL-1. The simplified method was found to be comparable to the Griess method. It was evaluated for the measurements of nitrite using the accuracy profile approach. The validation procedure results established that 80% of the future results would be within the acceptability limit of 10% over the validation domain ranging from 0.174 µg mL-1 to 1.37 µg mL-1. The developed method was furtherly applied in the determination of nitrite using a developed paper-based analytical device that detected a nitrite concentration of 3 µg mL-1 which is considered by the World Health Organization to be the maximal permissible limit of nitrite in drinking water.


Assuntos
Água Potável , Nitritos , Nitritos/análise , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA