Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 25(1): e0007423, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661414

RESUMO

Case studies present students with an opportunity to learn and apply course content through problem solving and critical thinking. Supported by the High-throughput Discovery Science & Inquiry-based Case Studies for Today's Students (HITS) Research Coordination Network, our interdisciplinary team designed, implemented, and assessed two case study modules entitled "You Are What You Eat." Collectively, the case study modules present students with an opportunity to engage in experimental research design and the ethical considerations regarding microbiome research and society. In this manuscript, we provide instructors with tools for adopting or adapting the research design and/or the ethics modules. To date, the case has been implemented using two modalities (remote and in-person) in three courses (Microbiology, Physiology, and Neuroscience), engaging over 200 undergraduate students. Our assessment data demonstrate gains in content knowledge and students' perception of learning following case study implementation. Furthermore, when reflecting on our experiences and student feedback, we identified ways in which the case study could be modified for different settings. In this way, we hope that the "You Are What You Eat" case study modules can be implemented widely by instructors to promote problem solving and critical thinking in the traditional classroom or laboratory setting when discussing next-generation sequencing and/or metagenomics research.

2.
Microbiol Spectr ; : e0473522, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36728413

RESUMO

Colonization resistance, also known as pathogen interference, describes the ability of a colonizing microbe to interfere with the ability of an incoming microbe to establish infection, and in the case of pathogenic organisms, cause disease in a susceptible host. Furthermore, colonization-associated dysbiosis of the commensal microbiota can alter host immunocompetence and infection outcomes. Here, we investigated the role of Bordetella bronchiseptica nasal colonization and associated disruption of the nasal microbiota on the ability of influenza A virus to establish infection in the murine upper respiratory tract. Targeted sequencing of the microbial 16S rRNA gene revealed that B. bronchiseptica colonization of the nasal cavity efficiently displaced the resident commensal microbiota-the peak of this effect occurring 7 days postcolonization-and was associated with reduced influenza associated-morbidity and enhanced recovery from influenza-associated clinical disease. Anti-influenza A virus hemagglutinin-specific humoral immune responses were not affected by B. bronchiseptica colonization, although the cellular influenza PA-specific CD8+ immune responses were dampened. Notably, influenza A virus replication in the nasal cavity was negated in B. bronchiseptica-colonized mice. Collectively, this work demonstrates that B. bronchiseptica-mediated pathogen interference prevents influenza A virus replication in the murine nasal cavity. This may have direct implications for controlling influenza A virus replication in, and transmission events originating from, the upper respiratory tract. IMPORTANCE The interplay of microbial species in the upper respiratory tract is important for the ability of an incoming pathogen to establish and, in the case of pathogenic organisms, cause disease in a host. Here, we demonstrate that B. bronchiseptica efficiently colonizes and concurrently displaces the commensal nasal cavity microbiota, negating the ability of influenza A virus to establish infection. Furthermore, B. bronchiseptica colonization also reduced influenza-associated morbidity and enhanced recovery from influenza-associated disease. Collectively, this study indicates that B. bronchiseptica-mediated interference prevents influenza A virus replication in the upper respiratory tract. This result demonstrates the potential for respiratory pathogen-mediated interference to control replication and transmission dynamics of a clinically important respiratory pathogen like influenza A virus.

3.
Front Microbiol ; 12: 689958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434175

RESUMO

Probiotics are heavily advertised to promote a healthy gastrointestinal tract and boost the immune system. This review article summarizes the history and diversity of probiotics, outlines conventional in vitro assays and in vivo models, assesses the pharmacologic effects of probiotic and pharmaceutical co-administration, and the broad impact of clinical probiotic utilization for gastrointestinal disease indications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA