Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Microbiol ; 14: 1254535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731926

RESUMO

Background and aims: The acquisition and gradual maturation of gut microbial communities during early childhood is central to an individual's healthy development. Bacteriophages have the potential to shape the gut bacterial communities. However, the complex ecological interactions between phages and their bacterial host are still poorly characterized. In this study, we investigated the abundance and diversity of integrated prophages in infant and adult gut bacteria by detecting integrated prophages in metagenome assembled genomes (MAGs) of commensal bacteria. Methods: Our study included 88 infants sampled at 3 weeks, 3 months, 6 months, and 12 months (n = 323 total samples), and their parents around delivery time (n = 138 total samples). Fecal DNA was extracted and characterized by using shotgun metagenomic sequencing, and a collection of prokaryotic MAGs was generated. The MAG collection was screened for the presence of integrated bacteriophage sequences, allowing their taxonomic and functional characterization. Results: A large collection of 6,186 MAGs from infant and adult gut microbiota was obtained and screened for integrated prophages, allowing the identification of 7,165 prophage sequences longer than 10 kb. Strikingly, more than 70% of the near-complete MAGs were identified as lysogens. The prevalence of prophages in MAGs varied across bacterial families, with a lower prevalence observed among Coriobacteriaceae, Eggerthellaceae, Veillonellaceae and Burkholderiaceae, while a very high prevalence of lysogen MAGs were observed in Oscillospiraceae, Enterococcaceae, and Enterobacteriaceae. Interestingly for several bacterial families such as Bifidobacteriaceae and Bacteroidaceae, the prevalence of prophages in MAGs was higher in early infant time point (3 weeks and 3 months) than in later sampling points (6 and 12 months) and in adults. The prophage sequences were clustered into 5,616 species-like vOTUs, 77% of which were novel. Finally, we explored the functional repertoire of the potential auxiliary metabolic genes carried by these prophages, encoding functions involved in carbohydrate metabolism and degradation, amino acid metabolism and carbon metabolism. Conclusion: Our study provides an enhanced understanding of the diversity and prevalence of lysogens in infant and adult gut microbiota and suggests a complex interplay between prophages and their bacterial hosts.

2.
EBioMedicine ; 94: 104695, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399600

RESUMO

BACKGROUND: Although the infant gut microbiota has been extensively studied, comprehensive assessment on the microbiota determinants including technical variables has not been performed in large infant cohorts. METHODS: We studied the effect of 109 variables on the 16S rRNA gene amplicon-based gut microbiota profiles of infants sampled longitudinally from three weeks to two years of life in the Finnish HELMi birth cohort. Spot faecal samples from both parents were included for intra-family analyses, totalling to 7657 samples from 985 families that were evaluated for beta-diversity patterns using permutational multivariate analysis on Bray-Curtis distances, and differential abundance testing and alpha-diversity for variables of interest. We also assessed the effect of different taxonomic levels and distance methods. FINDINGS: In time point-specific models, the largest share of variation explained, up to 2-6%, were seen in decreasing order for the DNA extraction batch, delivery mode and related perinatal exposures, defecation frequency and parity/siblings. Variables describing the infant gastrointestinal function were continuously important during the first two years, reflecting changes in e.g., feeding habits. The effect of parity/siblings on infant microbiota was modified by birth mode and exposure to intrapartum antibiotics, exemplifying the tight interlinkage of perinatal factors relevant for infant microbiota research. In total, up to 19% of the biological microbiota variation in the infant gut could be explained. Our results highlight the need to interpret variance partitioning results in the context of each cohort's characteristics and microbiota processing. INTERPRETATION: Our study provides a comprehensive report of key factors associated with infant gut microbiota composition across the two first years of life in a homogenous cohort. The study highlights possible important future research areas and confounding factors to be considered. FUNDING: This research was supported by Business Finland, Academy of Finland, Foundation for Nutrition Research and the Doctoral Program in Microbiology and Biotechnology, University of Helsinki, Finland.

3.
Inflamm Bowel Dis ; 29(1): 116-124, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36040412

RESUMO

BACKGROUND: The role of intestinal microbiota in inflammatory bowel diseases is intensively researched. Pediatric studies on the relation between microbiota and treatment response are sparse. We aimed to determine whether absolute abundances of gut microbes characterize the response to infliximab induction in pediatric inflammatory bowel disease. METHODS: We recruited pediatric patients with inflammatory bowel disease introduced to infliximab at Children's Hospital, University of Helsinki. Stool samples were collected at 0, 2, and 6 weeks for microbiota and calprotectin analyses. We defined treatment response as fecal calprotectin value <100 µg/g at week 6. Intestinal microbiota were analyzed by 16S ribosomal RNA gene amplicon sequencing using the Illumina MiSeq platform. We analyzed total bacterial counts using quantitative polymerase chain reaction and transformed the relative abundances into absolute abundances based on the total counts. RESULTS: At baseline, the intestinal microbiota in the treatment responsive group (n = 10) showed a higher absolute abundance of Bifidobacteriales and a lower absolute abundance of Actinomycetales than nonresponders (n = 19). The level of inflammation according to fecal calprotectin showed no statistically significant association with the absolute abundances of fecal microbiota. The results on relative abundances differed from the absolute abundances. At the genus level, the responders had an increased relative abundance of Anaerosporobacter but a reduced relative abundance of Parasutterella at baseline. CONCLUSIONS: High absolute abundance of Bifidobacteriales in the gut microbiota of pediatric patients reflects anti-inflammatory characteristics associated with rapid response to therapy. This warrants further studies on whether modification of pretreatment microbiota might improve the outcomes.


We studied absolute and relative abundances of fecal microbiota in relation to response to induction therapy with infliximab in pediatric inflammatory bowel disease. We discovered that a high absolute abundance of anti-inflammatory Bifidobacteriales at baseline associated with response.


Assuntos
Doenças Inflamatórias Intestinais , Microbiota , Humanos , Criança , Infliximab/uso terapêutico , Fator de Necrose Tumoral alfa , Inibidores do Fator de Necrose Tumoral , Doenças Inflamatórias Intestinais/tratamento farmacológico , Fezes/química , Complexo Antígeno L1 Leucocitário/análise
4.
Gut Microbes ; 14(1): 2142009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36322821

RESUMO

Biogeographic variations in the gut microbiota are pivotal to understanding the global pattern of host-microbiota interactions in prevalent lifestyle-related diseases. Pakistani adults, having an exceptionally high prevalence of type 2 diabetes mellitus (T2D), are one of the most understudied populations in microbiota research to date. The aim of the present study is to examine the gut microbiota across individuals from Pakistan and other populations of non-industrialized and industrialized lifestyles with a focus on T2D. The fecal samples from 94 urban-dwelling Pakistani adults with and without T2D were profiled by bacterial 16S ribosomal RNA gene and fungal internal transcribed spacer (ITS) region amplicon sequencing and eubacterial qPCR, and plasma samples quantified for circulating levels of lipopolysaccharide-binding protein (LBP) and the activation ability of Toll-like receptor (TLR)-signaling. Publicly available datasets generated with comparable molecular methods were retrieved for comparative analysis of the bacterial microbiota. Overall, urbanized Pakistanis' gut microbiota was similar to that of transitional or non-industrialized populations, depleted in Akkermansiaceae and enriched in Prevotellaceae (dominated by the non-Westernized clades of Prevotella copri). The relatively high proportion of Atopobiaceae appeared to be a unique characteristic of the Pakistani gut microbiota. The Pakistanis with T2D had elevated levels of LBP and TLR-signaling in circulation as well as gut microbial signatures atypical of other populations, e.g., increased relative abundance of Libanicoccus/Parolsenella, limiting the inter-population extrapolation of gut microbiota-based classifiers for T2D. Taken together, our findings call for a more global representation of understudied populations to extend the applicability of microbiota-based diagnostics and therapeutics.


Assuntos
Actinobacteria , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Adulto , Humanos , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/microbiologia , Paquistão , RNA Ribossômico 16S/genética , Bactérias/genética , Actinobacteria/genética
5.
Front Microbiol ; 13: 953475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274732

RESUMO

Background and aims: Birth mode and other early life factors affect a newborn's microbial colonization with potential long-term health effects. Individual variations in early life gut microbiota development, especially their effects on the functional repertoire of microbiota, are still poorly characterized. This study aims to provide new insights into the gut microbiome developmental trajectories during the first year of life. Methods: Our study comprised 78 term infants sampled at 3 weeks, 3 months, 6 months, and 12 months (n = 280 total samples), and their mothers were sampled in late pregnancy (n = 50). Fecal DNA was subjected to shotgun metagenomic sequencing. Infant samples were studied for taxonomic and functional maturation, and maternal microbiota was used as a reference. Hierarchical clustering on taxonomic profiles was used to identify the main microbiota developmental trajectories in the infants, and their associations with perinatal and postnatal factors were assessed. Results: In line with previous studies, infant microbiota composition showed increased alpha diversity and decreased beta diversity by age, converging toward an adult-like profile. However, we did not observe an increase in functional alpha diversity, which was stable and comparable with the mother samples throughout all the sampling points. Using a de novo clustering approach, two main infant microbiota clusters driven by Bacteroidaceae and Clostridiaceae emerged at each time point. The clusters were associated with birth mode and their functions differed mainly in terms of biosynthetic and carbohydrate degradation pathways, some of which consistently differed between the clusters for all the time points. The longitudinal analysis indicated three main microbiota developmental trajectories, with the majority of the infants retaining their characteristic cluster until 1 year. As many as 40% of vaginally delivered infants were grouped with infants delivered by C-section due to their clear and persistent depletion in Bacteroides. Intrapartum antibiotics, any perinatal or postnatal factors, maternal microbiota composition, or other maternal factors did not explain the depletion in Bacteroides in the subset of vaginally born infants. Conclusion: Our study provides an enhanced understanding of the compositional and functional early life gut microbiota trajectories, opening avenues for investigating elusive causes that influence non-typical microbiota development.

6.
Gut Microbes ; 14(1): 2095775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174236

RESUMO

Birth mode and maternal intrapartum (IP) antibiotics affect infants' gut microbiota development, but their relative contribution to absolute bacterial abundances and infant health has not been studied. We compared the effects of Cesarean section (CS) delivery and IP antibiotics on infant gut microbiota development and well-being over the first year. We focused on 92 healthy infants born between gestational weeks 37-42 vaginally without antibiotics (N = 26), with IP penicillin (N = 13) or cephalosporin (N = 7) or by CS with IP cephalosporin (N = 33) or other antibiotics (N = 13). Composition and temporal development analysis of the gut microbiota concentrated on 5 time points during the first year of life using 16S rRNA gene amplicon sequencing, integrated with qPCR to obtain absolute abundance estimates. A mediation analysis was carried out to identify taxa linked to gastrointestinal function and discomfort (crying, defecation frequency, and signs of gastrointestinal symptoms), and birth interventions. Based on absolute abundance estimates, the depletion of Bacteroides spp. was found specifically in CS birth, while decreased bifidobacteria and increased Bacilli were common in CS birth and exposure to IP antibiotics in vaginal delivery. The abundances of numerous taxa differed between the birth modes among cephalosporin-exposed infants. Penicillin had a milder impact on the infant gut microbiota than cephalosporin. CS birth and maternal IP antibiotics had both specific and overlapping effects on infants' gut microbiota development. The resulting deviations in the gut microbiota are associated with increased defecation rate, flatulence, perceived stomach pain, and intensity of crying in infancy.


Assuntos
Microbioma Gastrointestinal , Antibacterianos/farmacologia , Cefalosporinas , Cesárea , Feminino , Humanos , Lactente , Monobactamas , Penicilinas , Gravidez , RNA Ribossômico 16S/genética
7.
STAR Protoc ; 2(1): 100271, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33511356

RESUMO

Infants born by cesarean section have an intestinal microbiota that differs from that of infants delivered vaginally. Here, we report a protocol for performing oral transplantation of maternal fecal microbiota to newborn infants born by elective cesarean section. The crucial step of this protocol is the health screening process. This protocol can only be applied to healthy mothers and infants. For complete details on the use and execution of this protocol, please refer to Korpela et al. (2020).


Assuntos
Transplante de Microbiota Fecal , Cesárea , Feminino , Humanos , Recém-Nascido , Gravidez
8.
Cell ; 183(2): 324-334.e5, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007265

RESUMO

Infants born by vaginal delivery are colonized with maternal fecal microbes. Cesarean section (CS) birth disturbs mother-to-neonate transmission. In this study (NCT03568734), we evaluated whether disturbed intestinal microbiota development could be restored in term CS-born infants by postnatal, orally delivered fecal microbiota transplantation (FMT). We recruited 17 mothers, of whom seven were selected after careful screening. Their infants received a diluted fecal sample from their own mothers, taken 3 weeks prior to delivery. All seven infants had an uneventful clinical course during the 3-month follow-up and showed no adverse effects. The temporal development of the fecal microbiota composition of FMT-treated CS-born infants no longer resembled that of untreated CS-born infants but showed significant similarity to that of vaginally born infants. This proof-of-concept study demonstrates that the intestinal microbiota of CS-born infants can be restored postnatally by maternal FMT. However, this should only be done after careful clinical and microbiological screening.


Assuntos
Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Adulto , Cesárea/efeitos adversos , Parto Obstétrico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microbiota/fisiologia , Mães , Gravidez , Estudo de Prova de Conceito , Vagina/microbiologia
9.
BMJ Open ; 9(6): e028500, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31253623

RESUMO

PURPOSE: HELMi (Health and Early Life Microbiota) is a longitudinal, prospective general population birth cohort, set up to identify environmental, lifestyle and genetic factors that modify the intestinal microbiota development in the first years of life and their relation to child health and well-being. PARTICIPANTS: The HELMi cohort consists of 1055 healthy term infants born in 2016-2018 mainly at the capital region of Finland and their parents. The intestinal microbiota development of the infants is characterised based on nine, strategically selected, faecal samples and connected to extensive online questionnaire-collected metadata at weekly to monthly intervals focusing on the diet, other exposures and family's lifestyle as well as the health and growth of the child. Motor and cognitive developmental screening takes place at 18 months. Infant's DNA sample, mother's breast milk sample and both parent's spot faecal samples have been collected. FINDINGS TO DATE: The mean age of the mothers was 32.8 (SD 4.1) and fathers/coparents 34.8 (5.3) years at the time of enrolment. Seventeen percentage (n=180) of the infants were born by caesarean section. Just under half (49%) were firstborns; 50.7% were males. At 3 months of age, 86% of the babies were exclusively breastfed and 2% exclusively formula-fed. FUTURE PLANS: The current follow-up from pregnancy to first 24 months will be completed in March 2020, totalling to over 10 000 biological samples and over 50 000 questionnaire entries. The results are expected to identify environmental and host factors that affect early gut microbiota development and health, and hence give indications of how to prevent or reverse microbiota perturbations in infancy. This prospective cohort will be followed up further to identify how the early microbiota relates to later health outcomes, especially weight gain, infections and allergic and other chronic diseases. TRIAL REGISTRATION NUMBER: NCT03996304; Pre-results.


Assuntos
Microbioma Gastrointestinal/fisiologia , Adulto , Aleitamento Materno , Estudos de Coortes , Feminino , Finlândia , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Gravidez , Estudos Prospectivos
10.
Sci Rep ; 8(1): 10633, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006593

RESUMO

Bifidobacteria are common members of the gastro-intestinal microbiota of a broad range of animal hosts. Their successful adaptation to this particular niche is linked to their saccharolytic metabolism, which is supported by a wide range of glycosyl hydrolases. In the current study a large-scale gene-trait matching (GTM) effort was performed to explore glycan degradation capabilities in B. breve. By correlating the presence/absence of genes and associated genomic clusters with growth/no-growth patterns across a dataset of 20 Bifidobacterium breve strains and nearly 80 different potential growth substrates, we not only validated the approach for a number of previously characterized carbohydrate utilization clusters, but we were also able to discover novel genetic clusters linked to the metabolism of salicin and sucrose. Using GTM, genetic associations were also established for antibiotic resistance and exopolysaccharide production, thereby identifying (novel) bifidobacterial antibiotic resistance markers and showing that the GTM approach is applicable to a variety of phenotypes. Overall, the GTM findings clearly expand our knowledge on members of the B. breve species, in particular how their variable genetic features can be linked to specific phenotypes.


Assuntos
Bifidobacterium breve/genética , Estudos de Associação Genética , Genômica , Família Multigênica , Álcoois Benzílicos/metabolismo , Bifidobacterium breve/metabolismo , Vias Biossintéticas/genética , Biologia Computacional , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana/genética , Glucosídeos/metabolismo , Mutagênese , Polissacarídeos Bacterianos/biossíntese , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA