Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 109(8): 1305-1312, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35844034

RESUMO

PREMISE: Honeybees dominate the flower-visitor assemblages of many plant species, yet their efficiency in terms of the quality of pollen delivered to stigmas is largely unknown. We investigated why honeybees are poor pollinators of Aloe ferox, a self-incompatible succulent treelet with large numbers of flowers. Honeybees are very frequent visitors to flowers of this species, yet contribute very little to seed production. METHODS: We assessed pollen loads on honeybees, studied their visitation behavior, selectively excluded birds from plants to determine direct effects of bees on pollen deposition, seed set, and ovule abortion, and used a novel "split-pollinator" method to test whether honeybees deposit mainly low-quality self pollen. For the latter, we captured honeybees, and with their existing pollen loads, used them to either pollinate virgin flowers on the plant on which they were caught or to pollinate virgin flowers on different plants. RESULTS: Honeybees cumulatively deposit as much pollen on stigmas as do birds, but our experiments showed that the pollen deposited by honeybees is mostly low-quality self pollen that leads to substantial ovule discounting and depressed seed set. CONCLUSIONS: Lack of movement among A. ferox plants during individual honeybee foraging bouts is the most likely explanation for their deposition of low-quality self pollen on stigmas. The "split-pollinator" method is a simple and cost-effective technique to test the quality of pollination.


Assuntos
Abelhas , Magnoliopsida , Polinização , Animais , Flores , Pólen , Sementes
2.
Front Plant Sci ; 13: 808427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548276

RESUMO

Aboveground plant-arthropod interactions are typically complex, involving herbivores, predators, pollinators, and various other guilds that can strongly affect plant fitness, directly or indirectly, and individually, synergistically, or antagonistically. However, little is known about how ongoing natural selection by these interacting guilds shapes the evolution of plants, i.e., how they affect the differential survival and reproduction of genotypes due to differences in phenotypes in an environment. Recent technological advances, including next-generation sequencing, metabolomics, and gene-editing technologies along with traditional experimental approaches (e.g., quantitative genetics experiments), have enabled far more comprehensive exploration of the genes and traits involved in complex ecological interactions. Connecting different levels of biological organization (genes to communities) will enhance the understanding of evolutionary interactions in complex communities, but this requires a multidisciplinary approach. Here, we review traditional and modern methods and concepts, then highlight future avenues for studying the evolution of plant-arthropod interactions (e.g., plant-herbivore-pollinator interactions). Besides promoting a fundamental understanding of plant-associated arthropod communities' genetic background and evolution, such knowledge can also help address many current global environmental challenges.

3.
New Phytol ; 235(4): 1629-1640, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35194792

RESUMO

The evolution of floral traits is often considered to reflect selection for increased pollination efficiency. Known as the pollination-precision hypothesis, increased pollination efficiency is achieved by enhancing pollen deposition on precise areas of the pollinator. Most research to date addressing this hypothesis has examined plant species that are a priori predicted to place pollen precisely, but we still lack comparisons with species predicted to have low pollination efficiency. We studied 39 plant species with diverse floral morphologies and measured the precision of pollen placement on two pollinator groups: honey bees (genus Apis) and nectar bats (family Pteropodidae). Pollen was collected from four locations of each pollinator's body (bees: dorsal thorax, ventral thorax, dorsal abdomen, ventral abdomen; bats: crown, face, chest, wing) to calculate pollen placement precision using Pielou's evenness index. We also quantified variation in floral design by scoring floral symmetry, corolla fusion, floral orientation and stamen number. We confirm the importance of four floral character states (bilateral symmetry, fused corollas, horizontal orientation and reduced stamen number) in promoting precise pollen placement on diverse pollinators. Our findings provide phylogenetically corrected, empirical support that the evolution of the four floral characters reflect selection for enhanced precision of pollen placed on pollinators.


Assuntos
Quirópteros , Polinização , Animais , Abelhas , Flores , Néctar de Plantas , Pólen
4.
Biol Lett ; 15(7): 20190349, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31362606

RESUMO

Bird pollination systems are dominated by specialist nectarivores, such as hummingbirds in the Americas and sunbirds in Africa. Opportunistic (generalist) avian nectarivores such as orioles, weavers and bulbuls have also been implicated as plant pollinators, but their effectiveness as agents of pollen transfer is poorly known. Here, we compare the single-visit effectiveness of specialist and opportunistic avian nectarivores as pollinators of Aloe ferox, a plant that relies almost exclusively on birds for seed production. We found that the number of pollen grains on stigmas of flowers receiving single visits by opportunistic avian nectarivores was approximately threefold greater than on those receiving single visits by specialist sunbirds and about twofold greater than on those that received single visits by honeybees. The number of pollen grains on stigmas of flowers visited by sunbirds was similar to that on stigmas of unvisited flowers. These results show that opportunistic birds are highly effective pollinators of A. ferox, supporting the idea that some plants are specialized for pollination by opportunistic birds.


Assuntos
Aloe , Passeriformes , África , Animais , Abelhas , Flores , Polinização
5.
Ecol Evol ; 6(14): 5076-86, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27547334

RESUMO

Corolla chirality, the pinwheel arrangement of petals within a flower, is found throughout the core eudicots. In 15 families, different chiral type flowers (i.e., right or left rotated corolla) exist on the same plant, and this condition is referred to as unfixed/enantiomorphic corolla chirality. There are no investigations on the significance of unfixed floral chirality on directed pollen movement even though analogous mirror image floral designs, for example, enantiostyly, has evolved in response to selection to direct pollinator and pollen movement. Here, we examine the role of corolla chirality on directing pollen transfer, pollinator behavior, and its potential influence on disassortative mating. We quantified pollen transfer and pollinator behavior and movement for both right and left rotated flowers in two populations of Hypericum perforatum. In addition, we quantified the number of right and left rotated flowers at the individual level. Pollinators were indifferent to corolla chirality resulting in no difference in pollen deposition between right and left flowers. Corolla chirality had no effect on pollinator and pollen movement between and within chiral morphs. Unlike other mirror image floral designs, corolla chirality appears to play no role in promoting disassortative mating in this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA