Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7332, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921140

RESUMO

Female intrasexual competition can be intense in cooperatively breeding species, with some dominant breeders (matriarchs) limiting reproduction in subordinates via aggression, eviction or infanticide. In males, such tendencies bidirectionally link to testosterone, but in females, there has been little systematic investigation of androgen-mediated behaviour within and across generations. In 22 clans of wild meerkats (Suricata suricatta), we show that matriarchs 1) express peak androgen concentrations during late gestation, 2) when displaying peak feeding competition, dominance behaviour, and evictions, and 3) relative to subordinates, produce offspring that are more aggressive in early development. Late-gestation antiandrogen treatment of matriarchs 4) specifically reduces dominance behaviour, is associated with infrequent evictions, decreases social centrality within the clan, 5) increases aggression in cohabiting subordinate dams, and 6) reduces offspring aggression. These effects implicate androgen-mediated aggression in the operation of female sexual selection, and intergenerational transmission of masculinised phenotypes in the evolution of meerkat cooperative breeding.


Assuntos
Androgênios/metabolismo , Cruzamento , Comportamento Competitivo/fisiologia , Comportamento Cooperativo , Herpestidae/fisiologia , Comportamento Sexual Animal/fisiologia , Agressão , Antagonistas de Androgênios/farmacologia , Animais , Animais Recém-Nascidos , Animais Selvagens/fisiologia , Comportamento Competitivo/efeitos dos fármacos , Fezes/química , Feminino , Flutamida/farmacologia , Herpestidae/sangue , Masculino , Parto/fisiologia , Gravidez , Comportamento Sexual Animal/efeitos dos fármacos
2.
Anim Microbiome ; 3(1): 65, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598739

RESUMO

BACKGROUND: Antibiotics alter the diversity, structure, and dynamics of host-associated microbial consortia, including via development of antibiotic resistance; however, patterns of recovery from microbial imbalances and methods to mitigate associated negative effects remain poorly understood, particularly outside of human-clinical and model-rodent studies that focus on outcome over process. To improve conceptual understanding of host-microbe symbiosis in more naturalistic contexts, we applied an ecological framework to a non-traditional, strepsirrhine primate model via long-term, multi-faceted study of microbial community structure before, during, and following two experimental manipulations. Specifically, we administered a broad-spectrum antibiotic, either alone or with subsequent fecal transfaunation, to healthy, male ring-tailed lemurs (Lemur catta), then used 16S rRNA and shotgun metagenomic sequencing to longitudinally track the diversity, composition, associations, and resistomes of their gut microbiota both within and across baseline, treatment, and recovery phases. RESULTS: Antibiotic treatment resulted in a drastic decline in microbial diversity and a dramatic alteration in community composition. Whereas microbial diversity recovered rapidly regardless of experimental group, patterns of microbial community composition reflected long-term instability following treatment with antibiotics alone, a pattern that was attenuated by fecal transfaunation. Covariation analysis revealed that certain taxa dominated bacterial associations, representing potential keystone species in lemur gut microbiota. Antibiotic resistance genes, which were universally present, including in lemurs that had never been administered antibiotics, varied across individuals and treatment groups. CONCLUSIONS: Long-term, integrated study post antibiotic-induced microbial imbalance revealed differential, metric-dependent evidence of recovery, with beneficial effects of fecal transfaunation on recovering community composition, and potentially negative consequences to lemur resistomes. Beyond providing new perspectives on the dynamics that govern host-associated communities, particularly in the Anthropocene era, our holistic study in an endangered species is a first step in addressing the recent, interdisciplinary calls for greater integration of microbiome science into animal care and conservation.

3.
BMC Plant Biol ; 20(1): 253, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493218

RESUMO

BACKGROUND: Plant absorption of ultraviolet (UV) radiation can result in multiple deleterious effects to plant tissues. As a result, plants have evolved an array of strategies to protect themselves from UV radiation, particularly in the UV-B range (280-320 nm). A common plant response to UV exposure is investment in phenolic compounds that absorb damaging wavelengths of light. However, the inverse phenomenon - plant reflectance of UV to protect plant tissues - has not previously been explored. In a paired experiment, we expose half of our sample (N = 108) of insect-pollinated plants of the cultivar Zinnia Profusion Series to UV radiation, and protect the other half from all light < 400 nm for 42 days, and measure leaf and flower reflectance using spectroscopy. We compare UV-B reflectance in leaves and flowers at the beginning of the experiment or flowering, and after treatment. RESULTS: We find that plants protected from UV exposure downregulate UV-B reflectance, and that plants exposed to increased levels of UV show trends of increased UV-B reflectance. CONCLUSIONS: Our results indicate that upregulation of UV-B reflecting pigments or structures may be a strategy to protect leaves against highly energetic UV-B radiation.


Assuntos
Flores/efeitos da radiação , Plantas/efeitos da radiação , Raios Ultravioleta , Asteraceae/efeitos da radiação , Cor , Folhas de Planta/efeitos da radiação , Fenômenos Fisiológicos Vegetais/efeitos da radiação
4.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401310

RESUMO

Host-associated microbiomes shape and are shaped by myriad processes that ultimately delineate their symbiotic functions. Whereas a host's stable traits, such as its lineage, relate to gross aspects of its microbiome structure, transient factors, such as its varying physiological state, relate to shorter term, structural variation. Our understanding of these relationships in primates derives principally from anthropoid studies and would benefit from a broader, comparative perspective. We thus examined the vaginal, labial and axillary microbiota of captive, female ring-tailed lemurs (Lemur catta) and Coquerel's sifakas (Propithecus coquereli), across an ovarian cycle, to better understand their relation to stable (e.g. species identity/mating system, body site) and transient (e.g. ovarian hormone concentration, forest access) host features. We used 16S amplicon sequencing to determine microbial composition and enzyme-linked immunosorbent assays to measure serum hormone concentrations. We found marked variation in microbiota diversity and community composition between lemur species and their body sites. Across both host species, microbial diversity was significantly correlated with ovarian hormone concentrations: negatively with progesterone and positively with estradiol. The hosts' differential forest access related to the diversity of environmental microbes, particularly in axillary microbiomes. Such transient endogenous and exogenous modulators have potential implications for host reproductive health and behavioral ecology.


Assuntos
Lemur , Microbiota , Animais , Ecologia , Feminino , Florestas , Primatas
5.
Physiol Behav ; 193(Pt A): 90-100, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730033

RESUMO

Meerkats are group-living, insectivorous herpestids in which subordinate members provide extensive care for the dominant female's young. In contrast to some cooperative breeders, subordinate female meerkats are physiologically able to reproduce and occasionally do so successfully; their attempts are more frequently 'suppressed' via eviction or infanticide by the dominant female. Spontaneous abortion and neonatal loss occur with some regularity, further negatively impacting reproductive success. Here, we compared the reproductive outcomes and endocrine profiles, including of serum progesterone (P4), serum estradiol (E2), and fecal glucocorticoid metabolites (fGCm), of dominant and subordinate dams residing within their clans in the Kalahari Desert of South Africa. Our study spanned years of drought, which reduced insect abundance and represented a substantial environmental stressor. Meerkat pregnancies were identified at mid-term and culminated either in spontaneous abortions or full-term deliveries, after which pups were either lost prior to emergence from the natal den (usually within 2days of birth) or emerged at 2-3weeks. Neonatal loss exceeded fetal loss for all females, and contributed to narrowing the status-related disparity in female reproductive output seen during less arid periods. Although E2 concentrations were significantly lower in subordinate than dominant females, they were sufficient to support gestation. Absolute E2 concentrations may owe to androgenic precursors that also attain highest concentrations in dominant dams and may mediate aggression underlying female reproductive skew. Pregnancies terminating in fetal loss were marked by significantly lower P4 concentrations in mid-gestation and modestly lower E2 concentrations overall. Consistently high fGCm concentrations further increased across trimesters, particularly (but not consistently) in subordinates and in aborted pregnancies. Environmental stressors may modulate reproductive outcomes in meerkats through their influence on sex steroids and their effects on intragroup competition. The social and eco-physiological factors affecting intraspecific variation in reproductive output, even in obligate cooperative breeders, may be most apparent during extreme conditions, reflecting the benefits of long-term studies for assessing the impact of climate change.


Assuntos
Aborto Animal/epidemiologia , Aborto Animal/metabolismo , Gravidez/metabolismo , Reprodução , Predomínio Social , Estresse Fisiológico , Animais , Mudança Climática , Clima Desértico , Secas , Estradiol/sangue , Fezes/química , Feminino , Glucocorticoides/metabolismo , Herpestidae , Incidência , Progesterona/sangue , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , África do Sul , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA