Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pathogens ; 13(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921781

RESUMO

This study aims at the identification and characterization of five actinobacterial strains with presumed belonging to the species Curtobacterium flaccumfaciens isolated from tomato and pepper plants, and establishing the potential role of both plants as natural reservoirs of this phytopathogen. Species identification was performed via MALDI-ToF MS, 16S rDNA sequencing and PCR. The strains were Gram-positive with a coryneform cell shape having yellow/orange-pigmented colonies; positive for catalase and esculin, and starch and casein hydrolysis; oxidase-, urease-, indole- and nitrate-reduction-negative and were strictly aerobic. All isolates produced antimicrobial substances against various phytopathogenic bacteria. Tomato and pepper plants were artificially infected with newly isolated strains in order to establish their role as natural reservoirs of the bacteria. Morphological alterations were observed only in the tomato plants, with defoliation of the first two to four leaves at the 28th day. Then, viable coryneform bacterial isolates (n = 73) were successfully re-isolated only from the stems of the infected plants. The similarity between the re-isolates and the respective initial isolates was confirmed phenotypically and genotypically by RAPD-PCR, confirming that solanaceous vegetables can act as reservoirs of C. flaccumfaciens. This is the first report of C. flaccumfaciens in Bulgaria.

2.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38173312

RESUMO

Xanthomonas euvesicatoria is a major cause of bacterial spot disease in various crops. The present study was focused on the pathosystem pepper (Capsicum annuum L.) - X. euvesicatoria 269p (wild strain). The infectious process was studied using several different modes of in vivo inoculation under controlled conditions. The spread of the pathogen in different parts of the plants was monitored by a new qPCR procedure developed for the detection of X. euvesicatoria, as well as by re-isolation of viable bacterial cells. Photosynthesis, the number of viable pathogens, oxidative stress markers, activities of the main antioxidant enzymes, and levels of nonenzymatic antioxidants in the novel single-leaf model system were studied. The most important observation is that the invasion of the pathogen causes local infection and the dissemination of bacteria to the healthy parts of the host is blocked. The plants limit bacterial colonization around the entry points. Oxidative burst and alterations in antioxidant defenses are detected in infectious leaf lesions. Localized ROS overproduction resembles a hypersensitive response, but several differences can be observed. We assumed that pepper plants are more likely to manifest an intermediate phenotype, similar to lesions simulating disease or leaf flecking. By localizing the infection, possibly involving oxidative stress, the plant survives. However, the same applies to bacteria. The pathogen multiplies at the infection spots and is transmitted to other plants. Our conclusion is that the intermediate phenotype in the studied pathosystem is an example of long and successful co-evolution for both species.


Assuntos
Capsicum , Xanthomonas , Antioxidantes , Estresse Oxidativo , Alimentos , Folhas de Planta/genética , Xanthomonas/genética , Capsicum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Plants (Basel) ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836088

RESUMO

The present study was focused on the pathosystem pepper plants (Capsicum annuum L.)-phytopathogenic bacterium X. euvesicatoria (wild strain 269p)-bacteriophage BsXeu269p/3 and the possibility of bacteriophage-mediated biocontrol of the disease. Two new model systems were designed for the monitoring of the effect of the phage treatment on the infectious process in vivo. The spread of the bacteriophage and the pathogen was monitored by qPCR. A new pair of primers for phage detection via qPCR was designed, as well as probes for TaqMan qPCR. The epiphytic bacterial population and the potential bacteriolytic effect of BsXeu269p/3 in vivo was observed by SEM. An aerosol-mediated transmission model system demonstrated that treatment with BsXeu269p/3 reduced the amount of X. euvesicatoria on the leaf surface five-fold. The needle-pricking model system showed a significant reduction of the amount of the pathogen in infectious lesions treated with BsXeu269p/3 (av. 59.7%), compared to the untreated control. We found that the phage titer is 10-fold higher in the infection lesions but it was still discoverable even in the absence of the specific host in the leaves. This is the first report of in vivo assessment of the biocontrol potential of locally isolated phages against BS pathogen X. euvesicatoria in Bulgaria.

4.
Plants (Basel) ; 12(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840295

RESUMO

Bacteriophages have greatly engaged the attention of scientists worldwide due to the continuously increasing resistance of phytopathogenic bacteria to commercially used chemical pesticides. However, the knowledge regarding phages is still very insufficient and must be continuously expanded. This paper presents the results of the isolation, characterization, and evaluation of the potential of 11 phage isolates as natural predators of a severe phytopathogenic bacterium-Xanthomonas euvesicatoria. Phages were isolated from the rhizosphere of tomato plants with symptoms of bacterial spot. The plaque morphology of all isolates was determined on a X. euvesicatoria lawn via a plaque assay. Three of the isolates were attributed to the family Myoviridae based on TEM micrographs. All phages showed good long-term viability when stored at 4 °C and -20 °C. Three of the phage isolates possessed high stability at very low pH values. Fifty-five-day persistence in a soil sample without the presence of the specific host and a lack of lytic activity on beneficial rhizosphere bacteria were found for the phage isolate BsXeu269p/3. The complete genome of the same isolate was sequenced and analyzed, and, for the first time in this paper, we report a circular representation of a linear but circularly permuted phage genome among known X. euvesicatoria phage genomes.

5.
Pathogens ; 11(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36558841

RESUMO

The ability of certain human pathogens to adapt to plants without losing their virulence toward people is a major concern today. Thus, the aim of the present work was the investigation of the presence of cross-over pathogenic bacteria in infected tomato and pepper plants. The objects of the study were 21 samples from seven different parts of the plants and three from tomato rhizosphere. In total, 26 strains were isolated, identified by MALDI-TOF, and phenotypically characterized. The PCR amplification of the rpoB gene was applied as an approach for the rapid detection of cross-over pathogens in plant samples. A great bacterial diversity was revealed from tomato samples as nine species were identified (Leclercia adecarboxylata, Pseudesherichia vulneris, Enterobacter cancerogenus, Enterobacter cloacae, Enterobacter bugandensis, Acinetobacter calcoaceticus, Pantoea agglomerans, Pantoea ananatis, and Pectobacterium carotovorum). Polymicrobial contaminations were observed in samples T2 (tomato flower) and T10 (tomato fruit). Five species were identified from pepper samples (P. agglomerans, L. adecarboxylata, Pseudomonas sp., Pseudomonas putida, and Enterococcus sp.). Antibiotic resistance patterns were assigned in accordance with EFSA recommendations. All isolates showed varying resistance to the tested antibiotics. The genetic basis for the phenotypic antibiotic resistance was not revealed. No genes for the virulence factors were found among the population. To our knowledge, this is the first overall investigation of tomato and pepper cross-over pathogenic bacterial populations in Bulgaria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA