Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Commun ; 15(1): 16, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331941

RESUMO

Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.


Assuntos
Transtorno Autístico , Recém-Nascido Prematuro , Pré-Escolar , Lactente , Adulto , Humanos , Recém-Nascido , Encéfalo/patologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
2.
J Am Heart Assoc ; 12(14): e028565, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421268

RESUMO

Background Infants with congenital heart disease (CHD) are at risk of neurodevelopmental impairments, which may be associated with impaired brain growth. We characterized how perioperative brain growth in infants with CHD deviates from typical trajectories and assessed the relationship between individualized perioperative brain growth and clinical risk factors. Methods and Results A total of 36 infants with CHD underwent preoperative and postoperative brain magnetic resonance imaging. Regional brain volumes were extracted. Normative volumetric development curves were generated using data from 219 healthy infants. Z-scores, representing the degree of positive or negative deviation from the normative mean for age and sex, were calculated for regional brain volumes from each infant with CHD before and after surgery. The degree of Z-score change was correlated with clinical risk factors. Perioperative growth was impaired across the brain, and it was associated with longer postoperative intensive care stay (false discovery rate P<0.05). Higher preoperative creatinine levels were associated with impaired brainstem, caudate nuclei, and right thalamus growth (all false discovery rate P=0.033). Older postnatal age at surgery was associated with impaired brainstem and right lentiform growth (both false discovery rate P=0.042). Longer cardiopulmonary bypass duration was associated with impaired brainstem and right caudate growth (false discovery rate P<0.027). Conclusions Infants with CHD can have impaired brain growth in the immediate postoperative period, the degree of which associates with postoperative intensive care duration. Brainstem growth appears particularly vulnerable to perioperative clinical course, whereas impaired deep gray matter growth was associated with multiple clinical risk factors, possibly reflecting vulnerability of these regions to short- and long-term hypoxic injury.


Assuntos
Encéfalo , Cardiopatias Congênitas , Humanos , Lactente , Encéfalo/patologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Imageamento por Ressonância Magnética/métodos , Fatores de Risco
3.
Cereb Cortex ; 33(14): 8921-8941, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254801

RESUMO

Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.


Assuntos
Síndrome de Down , Substância Branca , Recém-Nascido , Criança , Humanos , Síndrome de Down/diagnóstico por imagem , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
4.
Nat Hum Behav ; 7(6): 942-955, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36928781

RESUMO

Features of brain asymmetry have been implicated in a broad range of cognitive processes; however, their origins are still poorly understood. Here we investigated cortical asymmetries in 442 healthy term-born neonates using structural and functional magnetic resonance images from the Developing Human Connectome Project. Our results demonstrate that the neonatal cortex is markedly asymmetric in both structure and function. Cortical asymmetries observed in the term cohort were contextualized in two ways: by comparing them against cortical asymmetries observed in 103 preterm neonates scanned at term-equivalent age, and by comparing structural asymmetries against those observed in 1,110 healthy young adults from the Human Connectome Project. While associations with preterm birth and biological sex were minimal, significant differences exist between birth and adulthood.


Assuntos
Córtex Cerebral , Lateralidade Funcional , Feminino , Humanos , Recém-Nascido , Masculino , Adulto Jovem , Vias Auditivas , Peso ao Nascer , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Estudos de Coortes , Conectoma , Lateralidade Funcional/fisiologia , Idade Gestacional , Saúde , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Rede Nervosa/anatomia & histologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Visuais
5.
Cereb Cortex ; 33(9): 5585-5596, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36408638

RESUMO

Formation of the functional connectome in early life underpins future learning and behavior. However, our understanding of how the functional organization of brain regions into interconnected hubs (centrality) matures in the early postnatal period is limited, especially in response to factors associated with adverse neurodevelopmental outcomes such as preterm birth. We characterized voxel-wise functional centrality (weighted degree) in 366 neonates from the Developing Human Connectome Project. We tested the hypothesis that functional centrality matures with age at scan in term-born babies and is disrupted by preterm birth. Finally, we asked whether neonatal functional centrality predicts general neurodevelopmental outcomes at 18 months. We report an age-related increase in functional centrality predominantly within visual regions and a decrease within the motor and auditory regions in term-born infants. Preterm-born infants scanned at term equivalent age had higher functional centrality predominantly within visual regions and lower measures in motor regions. Functional centrality was not related to outcome at 18 months old. Thus, preterm birth appears to affect functional centrality in regions undergoing substantial development during the perinatal period. Our work raises the question of whether these alterations are adaptive or disruptive and whether they predict neurodevelopmental characteristics that are more subtle or emerge later in life.


Assuntos
Conectoma , Nascimento Prematuro , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Imageamento por Ressonância Magnética , Encéfalo , Recém-Nascido Prematuro
6.
J Neuroinflammation ; 19(1): 265, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309753

RESUMO

Encephalopathy of prematurity (EoP) affects approximately 30% of infants born < 32 weeks gestation and is highly associated with inflammation in the foetus. Here we evaluated the efficacy of montelukast, a cysteinyl leukotriene receptor antagonist widely used to treat asthma in children, to ameliorate peripheral and central inflammation, and subsequent grey matter neuropathology and behaviour deficits in a mouse model of EoP. Male CD-1 mice were treated with intraperitoneal (i.p.) saline or interleukin-1beta (IL-1ß, 40 µg/kg, 5 µL/g body weight) from postnatal day (P)1-5 ± concomitant montelukast (1-30 mg/kg). Saline or montelukast treatment was continued for a further 5 days post-injury. Assessment of systemic and central inflammation and short-term neuropathology was performed from 4 h following treatment through to P10. Behavioural testing, MRI and neuropathological assessments were made on a second cohort of animals from P36 to 54. Montelukast was found to attenuate both peripheral and central inflammation, reducing the expression of pro-inflammatory molecules (IL-1ß, IL-6, TNF) in the brain. Inflammation induced a reduction in parvalbumin-positive interneuron density in the cortex, which was normalised with high-dose montelukast. The lowest effective dose, 3 mg/kg, was able to improve anxiety and spatial learning deficits in this model of inflammatory injury, and alterations in cortical mean diffusivity were not present in animals that received this dose of montelukast. Repurposed montelukast administered early after preterm birth may, therefore, improve grey matter development and outcome in EoP.


Assuntos
Encefalopatias , Nascimento Prematuro , Quinolinas , Recém-Nascido , Humanos , Feminino , Masculino , Animais , Camundongos , Substância Cinzenta , Nascimento Prematuro/tratamento farmacológico , Acetatos/uso terapêutico , Acetatos/farmacologia , Quinolinas/uso terapêutico , Quinolinas/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico
7.
Dev Cogn Neurosci ; 55: 101117, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662682

RESUMO

In the mature brain, structural and functional 'fingerprints' of brain connectivity can be used to identify the uniqueness of an individual. However, whether the characteristics that make a given brain distinguishable from others already exist at birth remains unknown. Here, we used neuroimaging data from the developing Human Connectome Project (dHCP) of preterm born neonates who were scanned twice during the perinatal period to assess the developing brain fingerprint. We found that 62% of the participants could be identified based on the congruence of the later structural connectome to the initial connectivity matrix derived from the earlier timepoint. In contrast, similarity between functional connectomes of the same subject at different time points was low. Only 10% of the participants showed greater self-similarity in comparison to self-to-other-similarity for the functional connectome. These results suggest that structural connectivity is more stable in early life and can represent a potential connectome fingerprint of the individual: a relatively stable structural connectome appears to support a changing functional connectome at a time when neonates must rapidly acquire new skills to adapt to their new environment.


Assuntos
Conectoma , Encéfalo , Conectoma/métodos , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética
8.
Front Neurosci ; 16: 886772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677357

RESUMO

The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.

9.
Dev Cogn Neurosci ; 54: 101103, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35364447

RESUMO

Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at great cost for the individual and community. By examining the developing brain and its relation to developmental outcomes we can start to elucidate how the emergence of brain circuits is manifested in variability of infant motor, cognitive and behavioural capacities. In this study, we examined if cortical structural covariance at birth, indexing coordinated development, is related to later infant behaviour. We included 193 healthy term-born infants from the Developing Human Connectome Project (dHCP). An individual cortical connectivity matrix derived from morphological and microstructural features was computed for each subject (morphometric similarity networks, MSNs) and was used as input for the prediction of behavioural scores at 18 months using Connectome-Based Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional performance. Predictive edges were distributed between and within known functional cortical divisions with a specific important role for primary and posterior cortical regions. These results reveal that multi-modal neonatal cortical profiles showing coordinated maturation are related to developmental outcomes and that network organization at birth provides an early infrastructure for future functional skills.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Encéfalo , Conectoma/métodos , Humanos , Lactente , Comportamento do Lactente , Recém-Nascido
10.
Hum Brain Mapp ; 43(5): 1577-1589, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897872

RESUMO

Infants born in early term (37-38 weeks gestation) experience slower neurodevelopment than those born at full term (40-41 weeks gestation). While this could be due to higher perinatal morbidity, gestational age at birth may also have a direct effect on the brain. Here we characterise brain volume and white matter correlates of gestational age at birth in healthy term-born neonates and their relationship to later neurodevelopmental outcome using T2 and diffusion weighted MRI acquired in the neonatal period from a cohort (n = 454) of healthy babies born at term age (>37 weeks gestation) and scanned between 1 and 41 days after birth. Images were analysed using tensor-based morphometry and tract-based spatial statistics. Neurodevelopment was assessed at age 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Infants born earlier had higher relative ventricular volume and lower relative brain volume in the deep grey matter, cerebellum and brainstem. Earlier birth was also associated with lower fractional anisotropy, higher mean, axial, and radial diffusivity in major white matter tracts. Gestational age at birth was positively associated with all Bayley-III subscales at age 18 months. Regression models predicting outcome from gestational age at birth were significantly improved after adding neuroimaging features associated with gestational age at birth. This work adds to the body of evidence of the impact of early term birth and highlights the importance of considering the effect of gestational age at birth in future neuroimaging studies including term-born babies.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Substância Branca/diagnóstico por imagem
11.
Neuroimage ; 243: 118488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419595

RESUMO

INTRODUCTION: The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS: We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS: In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION: We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Nascimento Prematuro/diagnóstico por imagem , Anisotropia , Encéfalo/crescimento & desenvolvimento , Espessura Cortical do Cérebro , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Terceiro Trimestre da Gravidez
12.
EClinicalMedicine ; 38: 100984, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34355154

RESUMO

BACKGROUND: Interpretation of incidental findings on term neonatal MRI brain imaging can be challenging as there is a paucity of published normative data on asymptomatic term neonates. Reporting radiologists and clinicians need to be familiar with these incidental findings to avoid over-investigation and misinterpretation particularly in relation to neurodevelopmental outcome. This study aimed to determine the prevalence of incidental findings in a large group of asymptomatic term neonates participating in the Developing Human Connectome Project (dHCP) who were invited for neurodevelopmental assessment at 18 months. METHODS: We retrospectively reviewed MRI brain scans performed on 500 term neonates enrolled in the dHCP study between 2015 and 2019 with normal clinical examination. We reviewed the results of the Bayley Scales of Infant and Toddler Development (Bayley III) applied to participants who attended for neurodevelopmental follow-up at 18 months. Scores considered "delayed" if <70 on language, cognitive or motor scales. FINDINGS: Incidental findings were observed in 47% of term infants. Acute cerebral infarcts were incidentally noted in five neonates (1%). More common incidental findings included punctate white matter lesions (PWMLs) (12%) and caudothalamic subependymal cysts (10%). The most frequent incidental finding was intracranial haemorrhage (25%), particularly subdural haemorrhage (SDH). SDH and PWMLs were more common in infants delivered with ventouse-assistance versus other delivery methods.Neurodevelopmental results were available on 386/500 (77%). 14 infants had a language score < 70 (2 SD below the mean). Of the 386 infants with neurodevelopmental follow up at 18 months, group differences in motor and language scores between infants with and without incidental findings were not significant (p = 0·17 and p = 0·97 respectively). Group differences in cognitive scores at 18 months between infants with (median (interquartile range) -100 (95-105)) and without (100 (95-110)) incidental findings were of small effect size to suggest clinical significance (Cliff's d = 0·15; p<0·05). INTERPRETATION: Incidental findings are relatively common on brain MRI in asymptomatic term neonates, majority are clinically insignificant with normal neurodevelopment at 18 months. FUNDING: This work was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/20072013/ERC grant agreement no. [319456] dHCP project), by core funding from the Wellcome/EPSRC Centre for Medical Engineering [WT203148/Z/16/Z] and by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London and/or the NIHR Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

13.
Brain Commun ; 3(2): fcab046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33860226

RESUMO

Infants with congenital heart disease are at risk of neurodevelopmental impairments, the origins of which are currently unclear. This study aimed to characterize the relationship between neonatal brain development, cerebral oxygen delivery and neurodevelopmental outcome in infants with congenital heart disease. A cohort of infants with serious or critical congenital heart disease (N = 66; N = 62 born ≥37 weeks) underwent brain MRI before surgery on a 3T scanner situated on the neonatal unit. T2-weighted images were segmented into brain regions using a neonatal-specific algorithm. We generated normative curves of typical volumetric brain development using a data-driven technique applied to 219 healthy infants from the Developing Human Connectome Project (dHCP). Atypicality indices, representing the degree of positive or negative deviation of a regional volume from the normative mean for a given gestational age, sex and postnatal age, were calculated for each infant with congenital heart disease. Phase contrast angiography was acquired in 53 infants with congenital heart disease and cerebral oxygen delivery was calculated. Cognitive and motor abilities were assessed at 22 months (N = 46) using the Bayley scales of Infant and Toddler Development-Third Edition. We assessed the relationship between atypicality indices, cerebral oxygen delivery and cognitive and motor outcome. Additionally, we examined whether cerebral oxygen delivery was associated with neurodevelopmental outcome through the mediating effect of brain volume. Negative atypicality indices in deep grey matter were associated with both reduced neonatal cerebral oxygen delivery and poorer cognitive abilities at 22 months across the whole sample. In infants with congenital heart disease born ≥37 weeks, negative cortical grey matter and total tissue volume atypicality indices, in addition to deep grey matter structures, were associated with poorer cognition. There was a significant indirect relationship between cerebral oxygen delivery and cognition through the mediating effect of negative deep grey matter atypicality indices across the whole sample. In infants born ≥37 weeks, cortical grey matter and total tissue volume atypicality indices were also mediators of this relationship. In summary, lower cognitive abilities in toddlers with congenital heart disease were associated with smaller grey matter volumes before cardiac surgery. The aetiology of poor cognition may encompass poor cerebral oxygen delivery leading to impaired grey matter growth. Interventions to improve cerebral oxygen delivery may promote early brain growth and improve cognitive outcomes in infants with congenital heart disease.

14.
Cereb Cortex ; 31(8): 3665-3677, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33822913

RESUMO

The diverse cerebral consequences of preterm birth create significant challenges for understanding pathogenesis or predicting later outcome. Instead of focusing on describing effects common to the group, comparing individual infants against robust normative data offers a powerful alternative to study brain maturation. Here we used Gaussian process regression to create normative curves characterizing brain volumetric development in 274 term-born infants, modeling for age at scan and sex. We then compared 89 preterm infants scanned at term-equivalent age with these normative charts, relating individual deviations from typical volumetric development to perinatal risk factors and later neurocognitive scores. To test generalizability, we used a second independent dataset comprising of 253 preterm infants scanned using different acquisition parameters and scanner. We describe rapid, nonuniform brain growth during the neonatal period. In both preterm cohorts, cerebral atypicalities were widespread, often multiple, and varied highly between individuals. Deviations from normative development were associated with respiratory support, nutrition, birth weight, and later neurocognition, demonstrating their clinical relevance. Group-level understanding of the preterm brain disguises a large degree of individual differences. We provide a method and normative dataset that offer a more precise characterization of the cerebral consequences of preterm birth by profiling the individual neonatal brain.


Assuntos
Encéfalo/anatomia & histologia , Recém-Nascido Prematuro/fisiologia , Peso ao Nascer , Desenvolvimento Infantil , Cognição , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro/psicologia , Imageamento por Ressonância Magnética , Masculino , Distribuição Normal , Fenótipo , Gravidez , Nascimento Prematuro , Valores de Referência , Caracteres Sexuais
15.
Neurobiol Dis ; 153: 105316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711492

RESUMO

The neurodevelopmental phenotype in Down Syndrome (DS), or Trisomy 21, is variable including a wide spectrum of cognitive impairment and a high risk of early-onset Alzheimer's disease (AD). A key metabolite of interest within the brain in DS is Myo-inositol (mIns). The NA+/mIns co-transporter is located on human chromosome 21 and is overexpressed in DS. In adults with DS, elevated brain mIns was previously associated with cognitive impairment and proposed as a risk marker for progression to AD. However, it is unknown if brain mIns is increased earlier in development. The aim of this study was to estimate mIns concentration levels and key brain metabolites [N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr)] in the developing brain in DS and aged-matched controls. We used in vivo magnetic resonance spectroscopy (MRS) in neonates with DS (n = 12) and age-matched controls (n = 26) scanned just after birth (36-45 weeks postmenstrual age). Moreover, we used Mass Spectrometry in early (10-20 weeks post conception) ex vivo fetal brain tissue samples from DS (n = 14) and control (n = 30) cases. Relative to [Cho] and [Cr], we report elevated ratios of [mIns] in vivo in the basal ganglia/thalamus, in neonates with DS, when compared to age-matched typically developing controls. Glycine concentration ratios [Gly]/[Cr] and [Cho]/[Cr] also appear elevated. We observed elevated [mIns] in the ex vivo fetal cortical brain tissue in DS compared with controls. In conclusion, a higher level of brain mIns was evident as early as 10 weeks post conception and was measurable in vivo from 36 weeks post-menstrual age. Future work will determine if this early difference in metabolites is linked to cognitive outcomes in childhood or has utility as a potential treatment biomarker for early intervention.


Assuntos
Encéfalo/metabolismo , Síndrome de Down/metabolismo , Feto/metabolismo , Inositol/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Colina/metabolismo , Creatina/metabolismo , Feminino , Feto/embriologia , Glicina/metabolismo , Humanos , Recém-Nascido , Espectroscopia de Ressonância Magnética , Masculino
16.
PLoS Biol ; 18(11): e3000976, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33226978

RESUMO

Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Feto/anatomia & histologia , Feto/metabolismo , Encéfalo/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Feminino , Maturidade dos Órgãos Fetais/genética , Feto/diagnóstico por imagem , Neuroimagem Funcional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Imageamento por Ressonância Magnética Multiparamétrica , Neurogênese/genética , Gravidez , Nascimento Prematuro , Análise Espaço-Temporal
17.
Prog Brain Res ; 254: 49-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32859293

RESUMO

Across the last century psychology has provided a lot of insight about social-cognitive competence. Recognizing facial expressions, joint attention, discrimination of cues and experiencing empathy are just a few examples of the social skills humans acquire from birth to adolescence. However, how very early brain maturation provides a platform to support the attainment of highly complex social behavior later in development remains poorly understood. Magnetic Resonance Imaging provides a safe means to investigate the typical and atypical maturation of regions of the brain responsible for social cognition in as early as the perinatal period. Here, we first review some technical challenges and advances of using functional magnetic resonance imaging on developing infants to then describe current knowledge on the development of diverse systems associated with social function. We will then explain how these characteristics might differ in infants with genetic or environmental risk factors, who are vulnerable to atypical neurodevelopment. Finally, given the rapid early development of systems necessary for social skills, we propose a new framework to investigate sensitive time windows of development when neural substrates might be more vulnerable to impairment due to a genetic or environmental insult.


Assuntos
Encéfalo/fisiologia , Desenvolvimento Infantil/fisiologia , Rede de Modo Padrão/fisiologia , Rede Nervosa/fisiologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Cognição Social , Habilidades Sociais , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/crescimento & desenvolvimento , Humanos , Lactente , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Transtornos do Neurodesenvolvimento/diagnóstico por imagem
18.
Cereb Cortex ; 30(11): 5767-5779, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32537627

RESUMO

Interruptions to neurodevelopment during the perinatal period may have long-lasting consequences. However, to be able to investigate deviations in the foundation of proper connectivity and functional circuits, we need a measure of how this architecture evolves in the typically developing brain. To this end, in a cohort of 241 term-born infants, we used magnetic resonance imaging to estimate cortical profiles based on morphometry and microstructure over the perinatal period (37-44 weeks postmenstrual age, PMA). Using the covariance of these profiles as a measure of inter-areal network similarity (morphometric similarity networks; MSN), we clustered these networks into distinct modules. The resulting modules were consistent and symmetric, and corresponded to known functional distinctions, including sensory-motor, limbic, and association regions, and were spatially mapped onto known cytoarchitectonic tissue classes. Posterior regions became more morphometrically similar with increasing age, while peri-cingulate and medial temporal regions became more dissimilar. Network strength was associated with age: Within-network similarity increased over age suggesting emerging network distinction. These changes in cortical network architecture over an 8-week period are consistent with, and likely underpin, the highly dynamic processes occurring during this critical period. The resulting cortical profiles might provide normative reference to investigate atypical early brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Neurogênese/fisiologia , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino
19.
Transl Psychiatry ; 10(1): 131, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376820

RESUMO

Studies in animal models of autism spectrum disorders (ASD) suggest atypical early neural activity is a core vulnerability mechanism which alters functional connectivity and predisposes to dysmaturation of neural circuits. However, underlying biological changes associated to ASD in humans remain unclear. Results from functional connectivity studies of individuals diagnosed with ASD are highly heterogeneous, in part because of complex life-long secondary and/or compensatory events. To minimize these confounds and examine primary vulnerability mechanisms, we need to investigate very early brain development. Here, we tested the hypothesis that brain functional connectivity is altered in neonates who are vulnerable to this condition due to a family history of ASD. We acquired high temporal resolution multiband resting state functional magnetic resonance imaging (fMRI) in newborn infants with and without a first-degree relative with ASD. Differences in local functional connectivity were quantified using regional homogeneity (ReHo) analysis and long-range connectivity was assessed using distance correlation analysis. Neonates who have a first-degree relative with ASD had significantly higher ReHo within multiple resting state networks in comparison to age matched controls; there were no differences in long range connectivity. Atypical local functional activity may constitute a biomarker of vulnerability, that might precede disruptions in long range connectivity reported in older individuals diagnosed with ASD.


Assuntos
Transtorno do Espectro Autista , Idoso , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Família , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
20.
Cereb Cortex ; 30(9): 4800-4810, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32306044

RESUMO

Preterm-born children are at increased risk of lifelong neurodevelopmental difficulties. Group-wise analyses of magnetic resonance imaging show many differences between preterm- and term-born infants but do not reliably predict neurocognitive prognosis for individual infants. This might be due to the unrecognized heterogeneity of cerebral injury within the preterm group. This study aimed to determine whether atypical brain microstructural development following preterm birth is significantly variable between infants. Using Gaussian process regression, a technique that allows a single-individual inference, we characterized typical variation of brain microstructure using maps of fractional anisotropy and mean diffusivity in a sample of 270 term-born neonates. Then, we compared 82 preterm infants to these normative values to identify brain regions with atypical microstructure and relate observed deviations to degree of prematurity and neurocognition at 18 months. Preterm infants showed strikingly heterogeneous deviations from typical development, with little spatial overlap between infants. Greater and more extensive deviations, captured by a whole brain atypicality index, were associated with more extreme prematurity and predicted poorer cognitive and language abilities at 18 months. Brain microstructural development after preterm birth is highly variable between individual infants. This poorly understood heterogeneity likely relates to both the etiology and prognosis of brain injury.


Assuntos
Encéfalo/patologia , Recém-Nascido Prematuro/crescimento & desenvolvimento , Nascimento Prematuro/patologia , Feminino , Humanos , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/etiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA