Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Res ; 120(3): 301-317, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38240646

RESUMO

AIMS: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, often caused by pathogenic sarcomere mutations. Early characteristics of HCM are diastolic dysfunction and hypercontractility. Treatment to prevent mutation-induced cardiac dysfunction is lacking. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a group of antidiabetic drugs that recently showed beneficial cardiovascular outcomes in patients with acquired forms of heart failure. We here studied if SGLT2i represent a potential therapy to correct cardiomyocyte dysfunction induced by an HCM sarcomere mutation. METHODS AND RESULTS: Contractility was measured of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) harbouring an HCM mutation cultured in 2D and in 3D engineered heart tissue (EHT). Mutations in the gene encoding ß-myosin heavy chain (MYH7-R403Q) or cardiac troponin T (TNNT2-R92Q) were investigated. In 2D, intracellular [Ca2+], action potential and ion currents were determined. HCM mutations in hiPSC-CMs impaired relaxation or increased force, mimicking early features observed in human HCM. SGLT2i enhance the relaxation of hiPSC-CMs, to a larger extent in HCM compared to control hiPSC-CMs. Moreover, SGLT2i-effects on relaxation in R403Q EHT increased with culture duration, i.e. hiPSC-CMs maturation. Canagliflozin's effects on relaxation were more pronounced than empagliflozin and dapagliflozin. SGLT2i acutely altered Ca2+ handling in HCM hiPSC-CMs. Analyses of SGLT2i-mediated mechanisms that may underlie enhanced relaxation in mutant hiPSC-CMs excluded SGLT2, Na+/H+ exchanger, peak and late Nav1.5 currents, and L-type Ca2+ current, but indicate an important role for the Na+/Ca2+ exchanger. Indeed, electrophysiological measurements in mutant hiPSC-CM indicate that SGLT2i altered Na+/Ca2+ exchange current. CONCLUSION: SGLT2i (canagliflozin > dapagliflozin > empagliflozin) acutely enhance relaxation in human EHT, especially in HCM and upon prolonged culture. SGLT2i may represent a potential therapy to correct early cardiac dysfunction in HCM.


Assuntos
Compostos Benzidrílicos , Cardiomiopatia Hipertrófica , Glucosídeos , Células-Tronco Pluripotentes Induzidas , Humanos , Canagliflozina , Cálcio , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Miócitos Cardíacos/patologia , Troponina T/genética , Sódio , Glucose
2.
J Vis Exp ; (195)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37306462

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a powerful tool for studying mutation-mediated changes in cardiomyocyte function and defining the effects of stressors and drug interventions. In this study, it is demonstrated that this optics-based system is a powerful tool to assess the functional parameters of hiPSC-CMs in 2D. By using this platform, it is possible to perform paired measurements in a well-preserved temperature environment on different plate layouts. Moreover, this system provides researchers with instant data analysis. This paper describes a method for measuring the contractility of unmodified hiPSC-CMs. Contraction kinetics are measured at 37 °C based on pixel correlation changes relative to a reference frame taken at relaxation at a 250 Hz sampling frequency. Additionally, simultaneous measurements of intracellular calcium transients can be acquired by loading the cell with a calcium-sensitive fluorophore, such as Fura-2. Using a hyperswitch, ratiometric calcium measurements can be performed on a 50 µm diameter illumination spot, corresponding to the area of the contractility measurements.


Assuntos
Cálcio , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Análise de Dados , Corantes Fluorescentes
3.
Stem Cell Res Ther ; 13(1): 332, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35870954

RESUMO

BACKGROUND: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have emerged as a powerful tool for disease modeling, though their immature nature currently limits translation into clinical practice. Maturation strategies increasingly pay attention to cardiac metabolism because of its pivotal role in cardiomyocyte development and function. Moreover, aberrances in cardiac metabolism are central to the pathogenesis of cardiac disease. Thus, proper modeling of human cardiac disease warrants careful characterization of the metabolic properties of iPSC-CMs. METHODS: Here, we examined the effect of maturation protocols on healthy iPSC-CMs applied in 23 studies and compared fold changes in functional metabolic characteristics to assess the level of maturation. In addition, pathological metabolic remodeling was assessed in 13 iPSC-CM studies that focus on hypertrophic cardiomyopathy (HCM), which is characterized by abnormalities in metabolism. RESULTS: Matured iPSC-CMs were characterized by mitochondrial maturation, increased oxidative capacity and enhanced fatty acid use for energy production. HCM iPSC-CMs presented varying degrees of metabolic remodeling ranging from compensatory to energy depletion stages, likely due to the different types of mutations and clinical phenotypes modeled. HCM further displayed early onset hypertrophy, independent of the type of mutation or disease stage. CONCLUSIONS: Maturation strategies improve the metabolic characteristics of iPSC-CMs, but not to the level of the adult heart. Therefore, a combination of maturation strategies might prove to be more effective. Due to early onset hypertrophy, HCM iPSC-CMs may be less suitable to detect early disease modifiers in HCM and might prove more useful to examine the effects of gene editing and new drugs in advanced disease stages. With this review, we provide an overview of the assays used for characterization of cardiac metabolism in iPSC-CMs and advise on which metabolic assays to include in future maturation and disease modeling studies.


Assuntos
Cardiomiopatia Hipertrófica , Cardiopatias , Células-Tronco Pluripotentes Induzidas , Adulto , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Diferenciação Celular , Cardiopatias/metabolismo , Humanos , Hipertrofia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA