Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Medicine (Baltimore) ; 103(26): e38745, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941370

RESUMO

This study aimed to establish an effective predictive model for postoperative delirium (POD) risk assessment after total knee arthroplasty (TKA) in older patients. The clinical data of 446 older patients undergoing TKA in the Orthopedics Department of our University from January to December 2022 were retrospectively analyzed, and the POD risk prediction model of older patients after TKA was established. Finally, 446 patients were included, which were divided into training group (n = 313) and verification group (n = 133). Logistic regression method was used to select meaningful predictors. The prediction model was constructed with nomographs, and the model was evaluated with correction curve and receiver operating characteristic curve. The logistic regression analysis showed that age, educational level, American Society of Anesthesiologists grade, accompaniment of chronic obstructive pulmonary disease, accompaniment of cerebral stroke, postoperative hypoxemia, long operation time, and postoperative pain were independent risk factors for POD after TKA (P < .05). The nomogram prediction model established. The area under receiver operating characteristic curve of the model group and the validation group were 0.954 and 0.931, respectively. The calibration curve of the prediction model has a high consistency between the 2 groups. The occurrence of POD was associated with age, educational level, American Society of Anesthesiologists grade, accompaniment of chronic obstructive pulmonary disease, accompaniment of cerebral stroke, postoperative hypoxemia, long operation time, and postoperative pain in TKA patients.


Assuntos
Artroplastia do Joelho , Delírio , Complicações Pós-Operatórias , Humanos , Artroplastia do Joelho/efeitos adversos , Masculino , Feminino , Idoso , Estudos Retrospectivos , Fatores de Risco , Medição de Risco/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Delírio/epidemiologia , Delírio/etiologia , Delírio/diagnóstico , Curva ROC , Pessoa de Meia-Idade , Nomogramas , Fatores Etários , Idoso de 80 Anos ou mais , Modelos Logísticos
2.
Zookeys ; 1201: 345-356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779583

RESUMO

A new genus of malachiine Melyridae, Platyintybiagen. nov., is described based on several male-specific characters, along with description of its type species, Platyintybiazhongshanensissp. nov., from China. A new combination, Platyintybiasarawakensis (Champion, 1921), comb. nov., is proposed after examining the type specimen; this species is newly recorded from China. A key to the genera of Chinese Apalochrini is provided for the first time.

3.
Int Immunopharmacol ; 134: 112176, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723369

RESUMO

BACKGROUND: Fibrosis results from excessive scar formation after tissue injury. Injured cells release alarmins such as interleukin 1 (IL-1) α and ß as primary mediators initiating tissue repair. However, how alarmins from different cell types differentially regulate fibrosis remains to be explored. METHODS: Here, we used tissue specific knockout strategy to illustrate a unique contribution of endothelial cell-derived IL-1α to lung and liver fibrosis. The two fibrotic animal model triggered by bleomycin and CCl4 were used to study the effects of endothelial paracrine/angiocrine IL-1α in fibrotic progression. Human umbilical vein endothelial cells (HUVEC) were performed to explore the production of angiocrine IL-1α at both transcriptional and post-transcriptional levels in vitro. RESULTS: We found that endothelial paracrine/angiocrine IL-1α primarily promotes lung and liver fibrosis during the early phase of organ repair. By contrast, myeloid cell-specific ablation of IL-1α in mice resulted in little influence on fibrosis, suggesting the specific pro-fibrotic role of IL-1α from endothelial cell but not macrophage. In vitro study revealed a coordinated regulation of IL-1α production in human primary endothelial cells at both transcriptional and post-transcriptional levels. Specifically, the transcription of IL-1α is regulated by RIPK1, and after caspase-8 (CASP8) cleaves the precursor form of IL-1α, its secretion is triggered by ion channel Pannexin 1 upon CASP8 cleavage. CONCLUSIONS: Endothelial cell-produced IL-1α plays a unique role in promoting organ fibrosis. Furthermore, the release of this angiocrine alarmin relies on a unique molecular mechanism involving RIPK1, CASP8, and ion channel Pannexin 1.


Assuntos
Bleomicina , Células Endoteliais da Veia Umbilical Humana , Interleucina-1alfa , Cirrose Hepática , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar , Animais , Humanos , Masculino , Camundongos , Alarminas/metabolismo , Tetracloreto de Carbono , Células Cultivadas , Conexinas/metabolismo , Conexinas/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/imunologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente
4.
Insect Sci ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38339808

RESUMO

The tanning hormone, Bursicon, is a neuropeptide secreted by the insect nervous system that functions as a heterodimer composed of Burs-α and Burs-ß subunits. It plays a critical role in the processes of cuticle tanning and wing expansion in insects. In this study, we successfully identified the AcBurs-α and AcBurs-ß genes in Aphis citricidus. The open reading frames of AcBurs-α and AcBurs-ß were 480 and 417 bp in length, respectively. Both AcBurs-α and AcBurs-ß exhibited 11 conserved cysteine residues. AcBurs-α and AcBurs-ß were expressed during all developmental stages of A. citricidus and showed high expression levels in the winged aphids. To investigate the potential role of AcBurs-α and AcBurs-ß in wing development, we employed RNA interference (RNAi) techniques. With the efficient silencing of AcBurs-α (44.90%) and AcBurs-ß (52.31%), malformed wings were induced in aphids. The proportions of malformed wings were 22.50%, 25.84%, and 38.34% in dsAcBurs-α-, dsAcBur-ß-, and dsAcBurs-α + dsAcBur-ß-treated groups, respectively. Moreover, feeding protein kinase A inhibitors (H-89) also increased the proportion of malformed wings to 30.00%. Feeding both double-stranded RNA and inhibitors (H-89) significantly downregulated the wing development-related genes nubbin, vestigial, notch and spalt major. Silence of vestigial through RNAi also led to malformed wings. Meanwhile, the exogenous application of 3 hormones that influence wing development did not affect the expression level of AcBursicon genes. These findings indicate that AcBursicon genes plays a crucial role in wing development in A. citricidus; therefore, it represents a potential molecular target for the control of this pest through RNAi-based approaches.

5.
MedComm (2020) ; 5(2): e494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405059

RESUMO

Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.

6.
Redox Biol ; 70: 103038, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266576

RESUMO

Dysfunction of the vascular angiocrine system is critically involved in regenerative defects and fibrosis of injured organs. Previous studies have identified various angiocrine factors and found that risk factors such as aging and metabolic disorders can disturb the vascular angiocrine system in fibrotic organs. One existing key gap is what sense the fibrotic risk to modulate the vascular angiocrine system in organ fibrosis. Here, using human and mouse data, we discovered that the metabolic pathway hydrogen sulfide (H2S)-AMP-activated protein kinase (AMPK) is a sensor of fibrotic stress and serves as a key mechanism upregulating the angiocrine factor plasminogen activator inhibitor-1 (PAI-1) in endothelial cells to participate in lung fibrosis. Activation of the metabolic sensor AMPK was inhibited in endothelial cells of fibrotic lungs, and AMPK inactivation was correlated with enriched fibrotic signature and reduced lung functions in humans. The inactivation of endothelial AMPK accelerated lung fibrosis in mice, while the activation of endothelial AMPK with metformin alleviated lung fibrosis. In fibrotic lungs, endothelial AMPK inactivation led to YAP activation and overexpression of the angiocrine factor PAI-1, which was positively correlated with the fibrotic signature in human fibrotic lungs and inhibition of PAI-1 with Tiplaxtinin mitigated lung fibrosis. Further study identified that the deficiency of the antioxidative gas metabolite H2S accounted for the inactivation of AMPK and activation of YAP-PAI-1 signaling in endothelial cells of fibrotic lungs. H2S deficiency was involved in human lung fibrosis and H2S supplement reversed mouse lung fibrosis in an endothelial AMPK-dependent manner. These findings provide new insight into the mechanism underlying the deregulation of the vascular angiocrine system in fibrotic organs.


Assuntos
Proteínas Quinases Ativadas por AMP , Inibidor 1 de Ativador de Plasminogênio , Fibrose Pulmonar , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/metabolismo , Fibrose , Pulmão/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo
8.
Front Immunol ; 14: 1180402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483625

RESUMO

Lung metastasis of breast cancer is closely associated with patient morbidity and mortality, which correlates with myeloid cells in the lung microenvironment. However, the heterogeneity and specificity of metastasis-associated myeloid cells have not been fully established in lung metastasis. Here, by integrating and analyzing single-cell transcriptomics, we found that myeloid subpopulations (Tppp3 + monocytes, Isg15 + macrophages, Ifit3 + neutrophils, and Il12b + DCs) play critical roles in the formation and development of the metastatic niche. Gene enrichment analyses indicate that several tumor-promoting pathways should be responsible for the process, including angiogenesis (Anxa1 and Anxa2 by Tppp3 + monocytes), immunosuppression (Isg15 and Cxcl10 by Isg15 + macrophages; Il12b and Ccl22 by Il12b + DCs), and tumor growth and metastasis (Isg15 and Isg20 by Ifit3 + neutrophils). Furthermore, we have validated these subpopulations in lung microenvironment of MMTV-PyVT transgenic mice and verified their association with poor progression of human breast cancer. Also, our results elucidated a crosstalk network among four myeloid subpopulations by cell-cell communication analysis. This study, therefore, highlights the crucial role of myeloid cells in lung metastasis and provides insights into underlying molecular mechanisms, which pave the way for therapeutic interventions in breast cancer metastasis to lung.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Feminino , Neoplasias da Mama/patologia , Transcriptoma , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Mama/metabolismo , Camundongos Transgênicos , Microambiente Tumoral , Melanoma Maligno Cutâneo
10.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511074

RESUMO

Chronic liver diseases affect over a billion people worldwide and often lead to fibrosis. Nonalcoholic steatohepatitis (NASH), a disease paralleling a worldwide surge in metabolic syndromes, is characterized by liver fibrosis, and its pathogenesis remains largely unknown, with no effective treatment available. Necroptosis has been implicated in liver fibrosis pathogenesis. However, there is a lack of research on necroptosis specific to certain cell types, particularly the vascular system, in the context of liver fibrosis and NASH. Here, we employed a mouse model of NASH in combination with inducible gene knockout mice to investigate the role of endothelial necroptosis in NASH progression. We found that endothelial cell (EC)-specific knockout of mixed lineage kinase domain-like protein (MLKL), a critical executioner involved in the disruption of cell membranes during necroptosis, alleviated liver fibrosis in the mouse NASH model. Mechanistically, EC-specific deletion of Mlkl mitigated the activation of TGFß/Smad 2/3 pathway, disrupting the pro-fibrotic crosstalk between endothelial cells and hepatic stellate cells (HSCs). Our findings highlight endothelial MLKL as a promising molecular target for developing therapeutic interventions for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Estreladas do Fígado/metabolismo , Células Endoteliais/metabolismo , Necroptose , Cirrose Hepática/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
11.
Nat Aging ; 3(3): 242-243, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118427

Assuntos
Envelhecimento , Fígado
12.
Front Immunol ; 14: 1041533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969192

RESUMO

Vascular leakage and inflammation are pathological hallmarks of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Endothelial cells (ECs) serve as a semipermeable barrier and play a key role in disease progression. It is well known that fibroblast growth factor receptor 1 (FGFR1) is required for maintaining vascular integrity. However, how endothelial FGFR1 functions in ALI/ARDS remains obscure. Here, we revealed that conditional deletion of endothelial FGFR1 aggravated LPS-induced lung injury, including inflammation and vascular leakage. Inhibition of its downstream Rho-associated coiled-coil-forming protein kinase 2 (ROCK2) by AAV Vec-tie-shROCK2 or its selective inhibitor TDI01 effectively attenuated inflammation and vascular leakage in a mouse model. In vitro, TNFα-stimulated human umbilical vein endothelial cells (HUVECs) showed decreased FGFR1 expression and increased ROCK2 activity. Furthermore, knockdown of FGFR1 activated ROCK2 and thus promoted higher adhesive properties to inflammatory cells and higher permeability in HUVECs. TDI01 effectively suppressed ROCK2 activity and rescued the endothelial dysfunction. These data demonstrated that the loss of endothelial FGFR1 signaling mediated an increase in ROCK2 activity, which led to an inflammatory response and vascular leakage in vivo and in vitro. Moreover, inhibition of ROCK2 activity by TDI01 provided great value and shed light on clinical translation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Animais , Humanos , Regulação para Cima , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Lipopolissacarídeos , Síndrome do Desconforto Respiratório/patologia , Lesão Pulmonar Aguda/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/patologia , Quinases Associadas a rho/metabolismo
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(1): 25-30, 2023 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-36655660

RESUMO

OBJECTIVES: To investigate the levels of physical growth and neurodevelopment in preterm infants at the corrected age of 18-24 months. METHODS: The physical growth data and neurodevelopment data of 484 preterm infants at corrected age of 18-24 months were prospectively collected by a post-discharge follow-up system for preterm infants. The infants were regularly followed up in Shenzhen Bao'an Maternal and Child Health Hospital Affiliated to Jinan University from April 2018 to December 2021. The neurodevelopment was evaluated by the Children Neuropsychological and Behavioral Scale-Revision 2016. A total of 219 full-term infants served as controls. The infants were divided into groups (extremely preterm, very preterm, moderate late preterm, and full-term) based on gestational age, and the groups were compared in the levels of physical growth and neurodevelopment. RESULTS: Except that the moderate preterm group had a higher length-for-age Z-score than the full-term group (P=0.038), there was no significant difference in physical growth indicators between the preterm groups and the full-term group (P>0.05). Each preterm group had a significantly lower total developmental quotient (DQ) than the full-term group (P<0.05). Except for the social behavior domain, the DQ of other domains in the extremely preterm and very preterm groups was significantly lower than that in the full-term group (P<0.05). The <32 weeks preterm group had a significantly higher incidence rate of global developmental delay than the full-term group (16.7% vs 6.4%, P=0.012), and the incidence rate of global developmental delay tended to increase with the reduction in gestational age (P=0.026). CONCLUSIONS: Preterm infants can catch up with full-term infants in terms of physical growth at the corrected age of 18-24 months, but with a lower neurodevelopmental level than full-term infants. Neurodevelopment monitoring and early intervention should be taken seriously for preterm infants with a gestational age of <32 weeks.


Assuntos
Assistência ao Convalescente , Recém-Nascido Prematuro , Lactente , Criança , Recém-Nascido , Humanos , Pré-Escolar , Alta do Paciente , Idade Gestacional
14.
Insect Sci ; 30(5): 1393-1404, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36576078

RESUMO

Systemic RNA interference deficient-1-like (SIL1) is considered a core component in dsRNA uptake in some insect species. Investigation related to the potential function of SIL1 in dsRNA uptake can contribute to a further understanding of RNA interference (RNAi) mechanisms in insects and agricultural pest control. However, the role of SIL1 in dsRNA uptake in insects such as aphids remains controversial. We have thoroughly analyzed the role of SIL1 from the model aphid Acyrthosiphon pisum (ApSIL1) in cellular dsRNA to clarify its function. First, the induced expression of ApSIL1 upon dsRNA oral exposure provided a vital clue for the possible involvement of ApSIL1 in cellular dsRNA uptake. Subsequent in vivo experiments using the RNAi-of-RNAi approach for ApSIL1 supported our hypothesis that the silencing efficiencies of reporter genes were reduced after inhibition of ApSIL1 expression. The impaired biological phenotypes of aphids, including cumulative average offspring, deformities of the nymph, and mortality upon pathogen infection, were then observed in the treatment group. Thereafter, in vitro dual-luciferase reporter assay showed compelling evidence that the luciferin signal was significantly attenuated when dsluciferase or dsGFP was transferred into ApSIL1-transfected Drosophila S2 cells. These observations further confirmed that the signal of Cy3-labeled dsRNA was rapidly attenuated with time in ApSIL1-transfected Drosophila S2 cells. Overall, these findings conclusively establish that ApSIL1 is involved in dsRNA uptake in A. pisum.


Assuntos
Afídeos , Animais , Interferência de RNA , Afídeos/fisiologia , Pisum sativum/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Drosophila/genética
15.
Front Cell Dev Biol ; 11: 1278968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322497

RESUMO

Hepatocellular carcinoma is one of the leading cancers worldwide and is a potential consequence of fibrosis. Therefore, the identification of key cellular and molecular mechanisms involved in liver fibrosis is an important goal for the development of new strategies to control liver-related diseases. Here, single-cell RNA sequencing data (GSE136103 and GES181483) of clinical liver non-parenchymal cells were analyzed to identify cellular and molecular mechanisms of liver fibrosis. The proportion of endothelial subpopulations in cirrhotic livers was significantly higher than that in healthy livers. Gene ontology and gene set enrichment analysis of differentially expressed genes in the endothelial subgroups revealed that extracellular matrix (ECM)-related pathways were significantly enriched. Since anthrax toxin receptor 2 (ANTXR2) interacts with the ECM, the expression of ANTXR2 in the liver endothelium was analyzed. ANTXR2 expression in the liver endothelium of wild-type (WT) mice significantly decreased after a 4-time sequential injection of carbon tetrachloride (CCl4) to induce liver fibrosis. Next, conditional knockout mice selectively lacking Antxr2 in endothelial cells were generated. After endothelial-specific Antxr2 knockout mice were subjected to the CCl4 model, the degree of liver fibrosis in the knockout group was significantly more severe than that in the control group. In addition, ANTXR2 in human umbilical vein endothelial cells promoted matrix metalloproteinase 2 (MMP2) activation to degrade the ECM in vitro. Finally, endothelial-specific overexpression of Antxr2 alleviated the development of liver fibrosis following adeno-associated virus treatment. Collectively, these results suggested that endothelial ANTXR2 plays a protective role in liver fibrosis. This function of ANTXR2 may be achieved by promoting MMP2 activation to degrade the ECM.

16.
Proc Natl Acad Sci U S A ; 119(50): e2201097119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469766

RESUMO

Despite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the JAG1 haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating jag1b and jag2b allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities. Although regenerating IHD cells proliferate, they remain clustered in mutants that fail to recover due to a blunted elevation of Notch signaling in the distal-most IHD cells. Increased Notch signaling is required for regenerating IHD cells to branch and segregate into the peripheral region of the growing liver, where biliary paucity is commonly observed in ALGS. Mosaic loss- and-gain-of-function analysis reveals Sox9b to be a key Notch transcriptional effector required cell autonomously to regulate these cellular dynamics during IHD regeneration. Treatment with a small-molecule putative Notch agonist stimulates Sox9 expression in ALGS patient fibroblasts and enhances hepatic sox9b expression, rescues IHD paucity and cholestasis, and increases survival in zebrafish mutants, thereby providing a proof-of-concept therapeutic avenue for this disorder.


Assuntos
Síndrome de Alagille , Ductos Biliares Intra-Hepáticos , Transdução de Sinais , Animais , Humanos , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mosaicismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Regeneração , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/patologia , Fibroblastos
17.
Pest Manag Sci ; 78(11): 4956-4962, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36181420

RESUMO

BACKGROUND: RNA interference (RNAi) has potential application in pest control, and selection of the specific target gene is one of the key steps in RNAi. As an important effector, the zinc finger protein (ZFP) gene has high similarity among aphid species, and may have potential use in an RNAi-based pest control strategy. This study assessed the control efficiency of an RNAi target, MPZC3H10, a CCCH-type ZFP gene, against green peach aphid. RESULTS: ZC3H10 amino acid sequence similarity is more than 97.71% among the five tested aphid species: Myzus persicae, Aphis citricidus, Acyrthosiphon pisum, Diuraphis noxia and Rhopalosiphum maidis. However, no homologous sequence was found in the transcriptome of their ladybeetle predator, Propylaea japonica. Spatial expression patterns revealed that MPZC3H10 showed high expression in the muscle and fat body of M. persicae. The RNAi bioassay revealed that silencing of MPZC3H10 resulted in high mortality (53.33%) in M. persicae. By contrast, there were no observed negative effects on the growth and development of P. japonica when fed on aphids treated with double-stranded RNA (dsRNA) or injected with a "high dose" of dsRNA. CONCLUSION: Targeting MPZC3H10 showed promising efficiency for green peach aphid control via artificially designed dsRNA, and was safe for the predatory ladybeetle. © 2022 Society of Chemical Industry.


Assuntos
Afídeos , Besouros , Animais , Afídeos/fisiologia , Besouros/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , Dedos de Zinco
18.
Stem Cells Transl Med ; 11(11): 1135-1142, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36169406

RESUMO

The vasculature occupies a large area of the body, and none of the physiological activities can be carried out without blood vessels. Blood vessels are not just passive conduits and barriers for delivering blood and nutrients. Meanwhile, endothelial cells covering the vascular lumen establish vascular niches by deploying some growth factors, known as angiocrine factors, and actively participate in the regulation of a variety of physiological processes, such as organ regeneration and fibrosis and the occurrence and development of cancer. After organ injury, vascular endothelial cells regulate the repair process by secreting various angiocrine factors, triggering the proliferation and differentiation process of stem cells. Therefore, analyzing the vascular niche and exploring the factors that maintain vascular homeostasis can provide strong theoretical support for clinical treatment targeting blood vessels. Here we mainly discuss the regulatory mechanisms of the vascular niche in organ regeneration and fibrosis.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Humanos , Neovascularização Fisiológica/fisiologia , Células-Tronco/fisiologia , Regeneração , Fibrose
19.
Front Immunol ; 13: 964477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072588

RESUMO

Liver fibrosis is one main histological characteristic of nonalcoholic steatohepatitis (NASH), a disease paralleling a worldwide surge in metabolic syndromes with no approved therapies. The role of the gut microbiota in NASH pathogenesis has not been thoroughly illustrated, especially how the gut microbiota derives metabolites to influence the distal liver in NASH. Here, we performed 16S rDNA amplicon sequencing analysis of feces from a mouse NASH model induced by a Western diet and CCl4 injury and found genera under Streptococcaceae, Alcaligenaceae, Oscillibacter, and Pseudochrobactrum, which are related metabolites of TMAO. Injection of the gut microbial metabolite TMAO reduced the progression of liver fibrosis in the mouse NASH model. Further analysis revealed that the anti-fibrotic TMAO normalized gut microbiota diversity and preserved liver sinusoidal endothelial cell integrity by inhibiting endothelial beta 1-subunit of Na (+), K (+)-ATPase (ATP1B1) expression. Collectively, our findings suggest TMAO-mediated crosstalk between microbiota metabolites and hepatic vasculature, and perturbation of this crosstalk disrupts sinusoidal vasculature to promote liver fibrosis in NASH.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Cirrose Hepática/complicações , Metilaminas , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Óxidos
20.
Brain Res Bull ; 187: 122-137, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781031

RESUMO

Trigeminal neuropathic pain (TNP) arises due to peripheral nerve injury, the mechanisms underlying which are little known. The altered gene expression profile in sensory ganglia is critical for neuropathic pain generation and maintenance. We, therefore, assessed the transcriptome of the trigeminal ganglion (TG) from mice at different periods of pain progression. Trigeminal neuropathic pain was established by partial infraorbital nerve transection (pIONT). High-throughput RNA sequencing was applied to detect the mRNA profiles of TG collected at 3 and 10 days after modeling. Injured TG displayed dramatically altered mRNA expression profiles compared to Sham. Different gene expression profiles were obtained at 3 and 10 days after pIONT. Moreover, 314 genes were significantly upregulated, and 81 were significantly downregulated at both 3 and 10 days post-pIONT. Meanwhile, enrichment analysis of these persistent differentially expressed genes (DEGs) showed that the MAPK pathway was the most significantly enriched pathway for upregulated DEGs, validated by immunostaining. In addition, TG cell populations defined by single-nuclei RNA sequencing displayed cellular localization of DEGs at a single-cell resolution. Protein-protein interaction (PPI) and sub-PPI network analyses constructed networks and identified the top 10 hub genes for DEGs at different time points. The present data provide novel information on the gene expression signatures of TG during the development and maintenance phases of TNP, and the identified hub genes and pathways may serve as potential targets for treatment.


Assuntos
Neuralgia , Neuralgia do Trigêmeo , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Neuralgia/genética , Neuralgia/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Gânglio Trigeminal/metabolismo , Neuralgia do Trigêmeo/genética , Neuralgia do Trigêmeo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA