Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioact Mater ; 35: 362-381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379697

RESUMO

Cell implantation offers an appealing avenue for heart repair after myocardial infarction (MI). Nevertheless, the implanted cells are subjected to the aberrant myocardial niche, which inhibits cell survival and maturation, posing significant challenges to the ultimate therapeutic outcome. The functional cardiac patches (CPs) have been proved to construct an elastic conductive, antioxidative, and angiogenic microenvironment for rectifying the aberrant microenvironment of the infarcted myocardium. More importantly, inducing implanted cardiomyocytes (CMs) adapted to the anisotropic arrangement of myocardial tissue by bioengineered structural cues within CPs are more conducive to MI repair. Herein, a functional Cig/(TA-Cu) CP served as biomimetic cardiac niche was fabricated based on structural anisotropic cigarette filter by modifying with tannic acid (TA)-chelated Cu2+ (TA-Cu complex) via a green method. This CP possessed microstructural anisotropy, electrical conductivity and mechanical properties similar to natural myocardium, which could promote elongation, orientation, maturation, and functionalization of CMs. Besides, the Cig/(TA-Cu) CP could efficiently scavenge reactive oxygen species, reduce CM apoptosis, ultimately facilitating myocardial electrical integration, promoting vascular regeneration and improving cardiac function. Together, our study introduces a functional CP that integrates multimodal cues to create a biomimetic cardiac niche and provides an effective strategy for cardiac repair.

2.
Macromol Biosci ; 23(12): e2300207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37534715

RESUMO

Engineering cardiac patches are proven to be effective in myocardial infarction (MI) repair, but it is still a tricky problem in tissue engineering to construct a scaffold with good biocompatibility, suitable mechanical properties, and solid structure. Herein, decellularized fish skin matrix is utilized with good biocompatibility to prepare a flexible conductive cardiac patch through polymerization of polydopamine (PDA) and polypyrrole (PPy). Compared with single modification, the double modification strategy facilitated the efficiency of pyrrole polymerization, so that the patch conductivity is improved. According to the results of experiments in vivo and in vitro, the scaffold can promote the maturation and functionalization of cardiomyocytes (CMs). It can also reduce the inflammatory response, increase local microcirculation, and reconstruct the conductive microenvironment in infarcted myocardia, thus improving the cardiac function of MI rats. In addition, the excellent flexibility of the scaffold, which enables it to be implanted in vivo through "folding-delivering-re-stretehing" pathway, provides the possibility of microoperation under endoscope, which avoids the secondary damage to myocardium by traditional thoracotomy for implantation surgery.


Assuntos
Infarto do Miocárdio , Polímeros , Ratos , Animais , Polímeros/química , Pirróis/química , Miocárdio , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos , Engenharia Tecidual/métodos , Alicerces Teciduais
3.
Macromol Biosci ; 22(12): e2200223, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116010

RESUMO

Heart failure caused by acute myocardial infarction (MI) still remains the main cause of death worldwide. Development of conductive hydrogels provided a promising approach for the treatment of myocardial infarction. However, the therapeutic potential of these hydrogels is still limited by material toxicity or low conductivity. The latter directly affects the coupling and the propagation of electrical signals between cells. Here, a functional conductive hydrogel by combining hydrophilic and biocompatible poly(vinyl alcohol) (PVA) with conductive melanin nanoparticles under physical crosslinking conditions is prepared. The composite hydrogels prepared by a facile fabrication process of five freeze/thaw cycles possessed satisfying mechanical properties and conductivity close to those of the natural heart. The physical properties and biocompatibility are evaluated in vitro experiments, showing that the introduction of melanin particles successfully improved the elasticity, conductivity, and cell adhesion of PVA hydrogel. In vivo, the composite hydrogels can enhance the cardiac repair effect by reducing MI area, slowing down ventricular wall thinning, and promoting the vascularization of infarct area in MI rat model. It is believed that the melanin/PVA composite hydrogel may be a suitable candidate material for MI repair.


Assuntos
Infarto do Miocárdio , Álcool de Polivinil , Ratos , Animais , Álcool de Polivinil/farmacologia , Melaninas/farmacologia , Hidrogéis/farmacologia , Infarto do Miocárdio/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA