Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
China CDC Wkly ; 6(37): 953-961, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39347447

RESUMO

Introduction: Antigen testing has been crucial in effectively managing the coronavirus disease 2019 (COVID-19) pandemic. This study evaluated the clinical performance of a nasopharyngeal swab (NPS)-based antigen rapid diagnostic test (Ag-RDT) compared to the gold standard real-time reverse transcription-polymerase chain reaction (RT-PCR) for early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We developed an IgM-based rapid antigen test for early detection of SARS-CoV-2 infection. Between July 2021 and January 2022, we analyzed 1,030 NPS samples from participants at three centers in different countries, using both antigen rapid diagnostic tests (Ag-RDT) and RT-PCR. Results: The Ag-RDT demonstrated minimal detection limits as low as 0.1 ng/mL for recombinant N antigen and 100 TCID50/mL for heat-inactivated SARS-CoV-2 virus. Specificity assessments involving four human coronaviruses and 13 other respiratory viruses showed no cross-reactivity. The Ag-RDT assay (ALLtest) exhibited high sensitivity (93.18%-100%) and specificity (99.67%-100%) across all centers. Factors such as cycle threshold (Ct) values and the timing of symptoms since onset were influential, with sensitivity increasing at lower Ct values (<30) and within the first week of symptoms. Conclusion: The ALLtest Ag-RDT demonstrated high reliability and significant potential for diagnosing suspected COVID-19 cases.

2.
Exp Neurol ; 382: 114950, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39278588

RESUMO

Intracerebral hemorrhage (ICH) is a severe disease that often leads to disability and death. Neuroinflammatory response is a key causative factor of early secondary brain injury after ICH. AIM2 is a DNA-sensing protein that recognizes cytosolic double-stranded DNA and take a significant part in neuroinflammation. Mitochondrial DNA participates in the translation of proteins such as the respiratory chain in the mitochondria. Whether mtDNA is involved in forming AIM2 inflammasome after ICH remains unclear. We used mice to construct ICH model in vivo and we used BV2 microglial cells treated with oxyhemoglobin to simulate ICH in vitro. Following lentiviral transfection to overexpress AIM2 antagonist P202, a notable decrease was observed in the levels of AIM2 inflammasome-associated proteins, leading to a reduction in dead neurons surrounding the hematoma and an enhancement in long-term and short-term behavior of neurological deficits. We further explored whether mtDNA took part in the AIM2 activation after ICH. The cytosolic mtDNA level was down-regulated by the mitochondrial division protector Mdivi-1 and up-regulated by transfection of mtDNA into cytoplasm. We found the expression level of AIM2 inflammasome-related proteins and inflammatory cytokines release were regulated by the cytosolic mtDNA level. In conclusion, after ICH, the mtDNA content in the cytoplasm of microglia around the hematoma rises, causing AIM2 inflammation leading to neuronal apoptosis, which leads to neurological deficits in mice. On the other hand, P202 was able to block inflammatory vesicle activation and improve neurological function by preventing the interaction between AIM2 protein and mitochondrial DNA.


Assuntos
Hemorragia Cerebral , DNA Mitocondrial , Proteínas de Ligação a DNA , Inflamassomos , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Animais , Microglia/metabolismo , Camundongos , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , DNA Mitocondrial/metabolismo , Inflamassomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Masculino , Doenças Neuroinflamatórias/metabolismo
3.
Exp Neurol ; 382: 114974, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39326825

RESUMO

Ischemic stroke remains a leading cause of global mortality and disability, with neuroinflammation playing a critical role in determining patient outcomes. Microglia, the brain's resident immune cells, can both exacerbate neuroinflammation and neuronal damage by releasing neurotoxic mediators and engaging in excessive phagocytosis, while also aiding recovery through the production of anti-inflammatory cytokines and debris clearance. However, the molecular mechanisms governing microglial activation and polarization after ischemic stroke are not well elucidated. In this study, we combined integrative transcriptomic analyses with experimental validation in a murine model of middle cerebral artery occlusion/reperfusion (MCAO/R) to explore microglial heterogeneity and identify key regulatory factors in ischemic stroke. Bioinformatics analysis identified Cd72 as a novel pro-inflammatory modulator within ischemia-associated microglial phenotypes. We observed significant upregulation of Cd72 in microglia following MCAO/R, and selective knockdown of Cd72 using CX3CR1Cre/ERT2 mice and Cre recombinase-dependent adeno-associated virus reduced MCAO/R-induced infarct volume, neuronal apoptosis, and neurological deficits. Furthermore, Cd72 expression in microglia was positively correlated with pro-inflammatory pathways and cytokines, including TNF-α, IL-1ß, and IL-6. Knockdown of Cd72 significantly reduced these pro-inflammatory factors, highlighting its potential as a therapeutic target for mitigating inflammation in ischemic stroke. In conclusion, this study identifies Cd72 as a critical pro-inflammatory regulator in microglia following ischemic stroke, with its knockdown effectively reducing neuroinflammation and associated brain injury, highlighting Cd72 as a promising therapeutic target.


Assuntos
Infarto da Artéria Cerebral Média , AVC Isquêmico , Microglia , Animais , Masculino , Camundongos , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Transcriptoma
4.
J Cereb Blood Flow Metab ; : 271678X241264401, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068534

RESUMO

Blood-brain barrier (BBB) damage significantly affects the prognosis of ischemic stroke patients. This project employed multi-omics analysis to identify key factors regulating BBB disruption during cerebral ischemia-reperfusion. An integrated analysis of three transcriptome sequencing datasets from mouse middle cerebral artery occlusion/reperfusion (MCAO/R) models identified eight downregulated genes in endothelial cells. Additionally, transcriptome analysis of BBB (cortex) and non-BBB (lung) endothelium of E13.5 mice revealed 2,102 upregulated genes potentially associated with BBB integrity. The eight downregulated genes were intersected with the 2,102 BBB-related genes and mapped using single-cell RNA sequencing data, revealing that solute carrier family 22 member 8 (Slc22a8) is specifically expressed in endothelial cells and pericytes and significantly decreases after MCAO/R. This finding was validated in the mouse MCAO/R model at both protein and mRNA levels in this study. External overexpression of Slc22a8 using a lentivirus carrying Tie2 improved Slc22a8 and tight junction protein levels and reduced BBB leakage after MCAO/R, accompanied by Wnt/ß-catenin signaling activation. In conclusion, this study suggested that MCAO/R-induced downregulation of Slc22a8 expression may be a crucial mechanism underlying BBB disruption. Interventions that promote Slc22a8 expression or enhance its function hold promise for improving the prognosis of patients with cerebral ischemia.

5.
Trop Med Infect Dis ; 9(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38922048

RESUMO

Echinococcosis poses a significant concern in the fields of public health and veterinary care as it can be transmitted between animals and humans. The primary endemic subtypes are cystic echinococcosis (CE) and alveolar echinococcosis (AE), which result from infestation by Echinococcus granulosus and Echinococcus multilocularis, respectively. A prominent epidemic of echinococcosis greatly affects the Tibet Autonomous Region (TAR) in China. A new technique called the loop-mediated isothermal amplification-lateral flow dipstick (LAMP-LFD) test is introduced in this research to differentiate between E. granulosus and E. multilocularis using their repetitive genetic sequences. The test is characterized by its portable nature, simple operation, quick result production, high sensitivity, and low susceptibility to aerosol contamination. The LAMP-LFD method demonstrated an exceptional minimal detection limit, reaching levels as low as approximately 1 fg/µL (femtogram per microliter) of genomic DNA. The assay's specificity was assessed, and no cross-reactivity was seen. A total of 982 dog fecal samples were collected from 54 counties in the TAR region between July 2021 and June 2022. The established method underwent validation using a commercially available ELISA kit. The agreement rate between the LAMP-LFD and ELISA methods was 97.25%, with a sensitivity of 96.05% and a specificity of 97.35%. The assay described in this study improves specificity by using a double-labeled probe, and it reduces the risk of false-positive results caused by aerosol contamination through the use of a sealed device. This makes it a suitable choice for quickly and accurately identifying the two main types of Echinococcus in field settings.

6.
Water Res ; 260: 121895, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875856

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the aquatic environment and have caused widespread concerns globally due to their potential hazards to humans. Especially, NPs have smaller sizes and higher penetrability, and therefore can penetrate the human barrier more easily and may pose potentially higher risks than MPs. Currently, most reviews have overlooked the differences between MPs and NPs and conflated them in the discussions. This review compared the differences in physicochemical properties and environmental behaviors of MPs and NPs. Commonly used techniques for removing MPs and NPs currently employed by wastewater treatment plants and drinking water treatment plants were summarized, and their weaknesses were analyzed. We further comprehensively reviewed the latest technological advances (e.g., emerging coagulants, new filters, novel membrane materials, photocatalysis, Fenton, ozone, and persulfate oxidation) for the separation and degradation of MPs and NPs. Microplastics are more easily removed than NPs through separation processes, while NPs are more easily degraded than MPs through advanced oxidation processes. The operational parameters, efficiency, and potential governing mechanisms of various technologies as well as their advantages and disadvantages were also analyzed in detail. Appropriate technology should be selected based on environmental conditions and plastic size and type. Finally, current challenges and prospects in the detection, toxicity assessment, and removal of MPs and NPs were proposed. This review intends to clarify the differences between MPs and NPs and provide guidance for removing MPs and NPs from urban water systems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Purificação da Água , Plásticos , Águas Residuárias/química
7.
Microbiol Spectr ; 12(7): e0399823, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38809001

RESUMO

Toxoplasma gondii, which causes toxoplasmosis, is prevalent in warm-blooded animals, such as cats, dogs, and humans. T. gondii causes economic losses to livestock production and represents a potential risk to public health. Dogs and cats are common hosts in the epidemiology of toxoplasmosis. The current molecular diagnostic tools for T. gondii infection require high technical skills, a laboratory environment, and complex instruments. Herein, we developed a recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) assay to detect T. gondii. The lowest limit of detection of the assay was 31 copies/µL for the T. gondii B1 gene. In addition, we established a visual RPA-CRISPR/Cas12a lateral flow band assay (RPA-CRISPR/Cas12a-LFA) combined with a digital visualization instrument, which minimized the problem of false-negative results for weakly positive samples and avoided misinterpretation of the results by the naked eye, making the LFA assay results more accurate. The assay established in this study could identify T. gondii within 55 min with high accuracy and sensitivity, without cross-reaction with other tested parasites. The developed assay was validated by establishing a mouse model of toxoplasmosis. Finally, the developed assay was used to investigate the prevalence of T. gondii in stray cats and dogs in Zhejiang province, Eastern China. The positive rates of T. gondii infection in stray cats and dogs were 8.0% and 4.0%, respectively. In conclusion, the RPA-CRISPR/Cas12a-LFA is rapid, sensitive, and accurate for the early diagnosis of T. gondii, showing promise for on-site surveillance. IMPORTANCE: Toxoplasma gondii is a virulent pathogen that puts millions of infected people at risk of chronic disease reactivation. Hosts of T. gondii are distributed worldwide, and cats and dogs are common hosts of T. gondii. Therefore, rapid diagnosis of early T. gondii infection and investigation of its prevalence in stray dogs and cats are essential. Here, we established a visual recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a-assay combined with a lateral flow band assay and a digital visualization instrument. Detailed analyses found that the assay could be used for the early diagnosis of T. gondii without false-negative results. Moreover, we detected the prevalence of T. gondii in stray cats and dogs in Zhejiang province, China. Our developed assay provides technical support for the early diagnosis of T. gondii and could be applied in prevalence surveys of T. gondii in stray dogs and cats.


Assuntos
Sistemas CRISPR-Cas , Doenças do Gato , Doenças do Cão , Toxoplasma , Toxoplasmose Animal , Gatos , Animais , Cães , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Doenças do Cão/parasitologia , Doenças do Cão/epidemiologia , Doenças do Cão/diagnóstico , Doenças do Gato/parasitologia , Doenças do Gato/epidemiologia , Doenças do Gato/diagnóstico , China/epidemiologia , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/epidemiologia , Toxoplasmose Animal/diagnóstico , Camundongos , Sensibilidade e Especificidade , Proteínas Associadas a CRISPR/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Diagnóstico Molecular/métodos , Proteínas de Bactérias , Endodesoxirribonucleases
8.
Parasit Vectors ; 17(1): 81, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389080

RESUMO

BACKGROUND: Timely diagnosis of Toxoplasma gondii infection is necessary to prevent and control toxoplasmosis transmission. The gold immunochromatographic assay (GICA) is a means of rapidly detecting pathogen in samples. GICA-based diagnostic methods have been developed to accurately detect pathogens with high sensitivity and specificity, and their application in T. gondii diagnosis is expected to yield good results. METHODS: Colloidal gold test strips were produced using T. gondii C-terminal truncated apical membrane antigen 1 (AMA1C). Colloidal gold-AMA1C and colloidal gold-murine protein conjugate were synthesized under optimal conditions. A nitrocellulose membrane was treated with AMA1C and goat anti-mouse antibody as the test line and control line, respectively. In total, 90 cat serum samples were tested using AMA1C-GICA and a commercial enzyme linked immunosorbent assay (ELISA) kit. The GICA results were digitally displayed using a portable colloidal gold immunochromatographic test strip analyzer (HMREADER). The sensitivity, specificity, and stability of AMA1C-GICA were assessed, and this was then used to examine clinical samples, including 203 human sera, 266 cat sera, and 81 dog sera. RESULTS: AMA1C-GICA had a detection threshold of 1:32 for T. gondii-positive serum. The GICA strips specifically detected T. gondii antibodies and exhibited no reactivity with Plasmodium vivax, Paragonimus kellicotti, Schistosoma japonicum, Clonorchis sinensis, and Schistosoma mansoni. Consequently, 15 (16.7%) positive samples were detected using the AMA1C-GICA and commercial ELISA kits for each of the assays. The receiver-operating characteristic curve showed that GICA had a relative sensitivity of 85.3% and specificity of 92%, with an area under the curve of 98%. After analyzing clinical samples using HMREADER, 1.2%-23.4% of these samples were found to be positive for T. gondii. CONCLUSIONS: This study presents a novel assay that enables timely and efficient detection of serum antibodies against T. gondii, thereby allowing for its early clinical diagnosis. Furthermore, the integration of digital detection using HMREADER can enhance the implementation of GICA.


Assuntos
Toxoplasma , Toxoplasmose , Camundongos , Animais , Cães , Humanos , Cromatografia de Afinidade/métodos , Sensibilidade e Especificidade , Imunoensaio/métodos , Toxoplasmose/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Anti-Helmínticos , Coloide de Ouro/análise , Coloide de Ouro/química
9.
Neurosci Lett ; 818: 137553, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949291

RESUMO

Disruption of the blood-brain barrier (BBB) following cerebral ischemia-reperfusion injury (CIRI) is a major factor in the pathophysiology of stroke. Endothelial cell-cell communication is essential for maintaining BBB integrity. By analyzing GSE227651 data, we found that a decrease in endothelial cell-cell communication mediated by Sema3/Nrp1 may be due to the downregulation of Nrp1 transcription, which could contribute to BBB breakdown after CIRI. We confirmed this hypothesis by using western blot analysis to show a reduction in Nrp1 protein levels in penumbra endothelial cells after CIRI in mice. We then overexpressed Nrp1 specifically in brain endothelial cells using adeno-associated virus in mice. Furthermore, Nrp1 overexpression had a protective effect on BBB integrity, as evidenced by a decrease in IgG and albumin leakage caused by CIRI in mice. Finally, we found that Nrp1 overexpression also reduced brain cell death and neurological deficits induced by cerebral ischemia-reperfusion in mice. Our findings suggest that Nrp1 downregulation may be a key factor in the breakdown of endothelial cell-cell communication and subsequent BBB disruption following CIRI. Targeting Nrp1-mediated pathways may be a promising approach for mitigating BBB damage and alleviating neurological consequences in stroke patients.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/metabolismo , Infarto Cerebral/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neuropilina-1/metabolismo , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/metabolismo
10.
BMC Vet Res ; 19(1): 229, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924072

RESUMO

BACKGROUND: Diseases caused by Toxoplasma gondii (T. gondii) have introduced serious threats to public health. There is an urgent need to develop a rapid detection method for T. gondii infection in cats, which are definitive hosts. Recombinant apical membrane antigen 1 (rAMA1) was produced in a prokaryotic expression system and used as the detection antigen. The aim of this study was to evaluate and optimize a reliable indirect enzyme-linked immunosorbent assay (iELISA) method based on rAMA1 for the detection of antibodies against T. gondii in cats. RESULTS: The rAMA1-iELISA method was developed and optimized by the chessboard titration method. There were no cross-reactions between T. gondii-positive cat serum and positive serum for other pathogens, indicating that rAMA1-iELISA could only detect T. gondii in most cases. The lowest detection limit of rAMA1-iELISA was 1:3200 (dilution of positive serum), and the CV of repeated tests within batches and between batches were confirmed to be less than 10%. The results of 247 cat serum samples detected by rAMA1-iELISA (kappa value = 0.622, p < 0.001) were in substantial agreement with commercial ELISA. The ROC curve analysis revealed the higher overall check accuracy of rAMA1-iELISA (sensitivity = 91.7%, specificity = 93.6%, AUC = 0.956, 95% CI 0.905 to 1.000) than GRA7-based iELISA (sensitivity = 91.7%, specificity = 85.5%, AUC = 0.936, 95% CI 0.892 to 0.980). Moreover, the positive rate of rAMA1-iELISA (6.5%, 16/247) was higher than that of GRA7-based iELISA (3.6%, 9/247) and that of commercial ELISA kit (4.9%, 12/247). CONCLUSION: The iELISA method with good specificity, sensitivity, and reproducibility was established and can be used for large-scale detection of T. gondii infection in clinical cat samples.


Assuntos
Doenças do Gato , Toxoplasma , Toxoplasmose Animal , Gatos , Animais , Antígenos de Protozoários , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Anticorpos Antiprotozoários , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Toxoplasmose Animal/diagnóstico , Doenças do Gato/diagnóstico
11.
PLoS Negl Trop Dis ; 17(9): e0011626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37773953

RESUMO

BACKGROUND: Artesunate (ART) has been reported to have an antifibrotic effect in various organs. The underlying mechanism has not been systematically elucidated. We aimed to clarify the effect of ART on liver fibrosis induced by Schistosoma japonicum (S. japonicum) in an experimentally infected rodent model and the potential underlying mechanisms. METHODS: The effect of ART on hepatic stellate cells (HSCs) was assessed using CCK-8 and Annexin V-FITC/PI staining assays. The experimental model of liver fibrosis was established in the Mongolian gerbil model infected with S. japonicum cercariae and then treated with 20 mg/kg or 40 mg/kg ART. The hydroxyproline (Hyp) content, malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities in liver tissue were measured and histopathological changes of liver tissues were observed. Whole-transcriptome RNA sequencing (RNA-seq) of the liver tissues was performed. Differentially expressed genes (DEGs) were identified using bioinformatic analysis and verified by quantitative PCR (qPCR) and western blot assay. RESULTS: ART significantly inhibited the proliferation and induce the apoptosis of HSCs in a dose-dependent manner. In vivo, Hyp content decreased significantly in the ART-H group compared to the model (MOD) group and GPX activity was significantly higher in the ART-H group than in the MOD group. Besides, ART treatment significantly reduced collagen production (p <0.05). A total of 158 DEGs and 44 differentially expressed miRNAs related to ART-induced anti-schistosomiasis liver fibrosis were identified. The qPCR and western blot results of selected DEGs were consistent with the sequencing results. These DEGs were implicated in key pathways such as immune and inflammatory response, integrin-mediated signaling and toll-like receptor signaling pathways. CONCLUSION: ART is effective against liver fibrosis using Mongolian gerbil model induced by S. japonicum infection. We identified host candidate regulators of schistosomiasis-induced liver fibrosis in response to ART through transcriptomics approach.

12.
Infect Dis Poverty ; 12(1): 60, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322556

RESUMO

BACKGROUND: Toxoplasma gondii is an obligate intracellular apicomplexan parasite and is responsible for zoonotic toxoplasmosis. It is essential to develop an effective anti-T. gondii vaccine for the control of toxoplasmosis, and this study is to explore the immunoprotective effects of a live attenuated vaccine in mice and cats. METHODS: First, the ompdc and uprt genes of T. gondii were deleted through the CRISPR-Cas9 system. Then, the intracellular proliferation and virulence of this mutant strain were evaluated. Subsequently, the immune responses induced by this mutant in mice and cats were detected, including antibody titers, cytokine levels, and subsets of T lymphocytes. Finally, the immunoprotective effects were evaluated by challenge with tachyzoites of different strains in mice or cysts of the ME49 strain in cats. Furthermore, to discover the effective immune element against toxoplasmosis, passive immunizations were carried out. GraphPad Prism software was used to conduct the log-rank (Mantel-Cox) test, Student's t test and one-way ANOVA. RESULTS: The RHΔompdcΔuprt were constructed by the CRISPR-Cas9 system. Compared with the wild-type strain, the mutant notably reduced proliferation (P < 0.05). In addition, the mutant exhibited virulence attenuation in both murine (BALB/c and BALB/c-nu) and cat models. Notably, limited pathological changes were found in tissues from RHΔompdcΔuprt-injected mice. Furthermore, compared with nonimmunized group, high levels of IgG (IgG1 and IgG2a) antibodies and cytokines (IFN-γ, IL-4, IL-10, IL-2 and IL-12) in mice were detected by the mutant (P < 0.05). Remarkably, all RHΔompdcΔuprt-vaccinated mice survived a lethal challenge with RHΔku80 and ME49 and WH6 strains. The immunized sera and splenocytes, especially CD8+ T cells, could significantly extend (P < 0.05) the survival time of mice challenged with the RHΔku80 strain compared with naïve mice. In addition, compared with nonimmunized cats, cats immunized with the mutant produced high levels of antibodies and cytokines (P < 0.05), and notably decreased the shedding numbers of oocysts in feces (95.3%). CONCLUSIONS: The avirulent RHΔompdcΔuprt strain can provide strong anti-T. gondii immune responses, and is a promising candidate for developing a safe and effective live attenuated vaccine.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Animais , Gatos , Camundongos , Toxoplasma/genética , Linfócitos T CD8-Positivos , Vacinas Atenuadas , Proteínas de Protozoários/genética , Citocinas , Camundongos Endogâmicos BALB C , Anticorpos Antiprotozoários , Toxoplasmose Animal/prevenção & controle
13.
J Hazard Mater ; 450: 131089, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870096

RESUMO

Micro-nanoplastics (M-NPs) have become an emerging critical issue in the environment because they migrate easily, can bioaccumulate with toxic effects, and are difficult to degrade. Unfortunately, the current technologies for removing or degrading M-NPs in drinking water are insufficient to eliminate them completely, and residual M-NPs in drinking water may pose a threat to human health by impairing human immunity and metabolism. In addition to their intrinsic toxic effects, M-NPs may be even more harmful after drinking water disinfection than before disinfection. Herein, this paper comprehensively summarizes the negative impacts of several commonly used disinfection processes (ozone, chlorine, and UV) on M-NPs. Moreover, the potential leaching of dissolved organics from M-NPs and the production of disinfection byproducts during the disinfection process are discussed in detail. Moreover, due to the diversity and complexity of M-NPs, their adverse effects may exceed those of conventional organics (e.g., antibiotics, pharmaceuticals, and algae) after the disinfection process. Finally, we propose enhanced conventional drinking water treatment processes (e.g., enhanced coagulation, air flotation, advanced adsorbents, and membrane technologies), detection of residual M-NPs, and biotoxicological assessment as promising and ecofriendly candidates to efficiently remove M-NPs and avoid the release of secondary hazards.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Microplásticos , Desinfecção , Cloro , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 858(Pt 2): 159907, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336059

RESUMO

Bacterial pathogens and antibiotic resistance genes (ARGs) are extensively disseminated into the environment via hospital wastewater (HWW), as it contains large quantities of feces from resident patients. However, studies on the antibiotic resistome and pathogenic bacteria from the gut of resident patients within the hospital wastewater treatment plant (hWWTP) are limited. Here, we examined and compared the occurrence and abundance of ARGs, mobile genetic elements (MGEs), metals, and bacterial communities from the feces of patients in a typical hWWTP system and determined the pathogenic hosts responsible for transferring ARGs. There were 176 ARGs and 43 MGEs detected in the feces of hospitalized patients, 129 genes were persistent, and 88 genes were enriched after HWW treatment, particularly for the blaVEB, blaNDM, and class 1 integron (intI1), with an average of 659-fold, 202-fold, and seven-fold enrichment, respectively. MGEs, especially Is613, in the feces of hospitalized patients were exceptionally abundant and even surpassed the abundance of total ARGs, which explained the persistence of ARGs in hWWTPs due to possible gene mobilization events. Bacteroidetes and Firmicutes were the most abundant phyla in these feces, accounting for 81 % of the total gut microbiota, while Epsilonbacteraeota and Proteobacteria dominated the hWWTPs. Additionally, 54 possible bacterial pathogens were found in the hospital environment, including four "ESKAPE" pathogens and 14 cancer-related pathogens. Many of them were strongly associated with different types of ARGs. Notably, Bacteroides was the major potential ARG-harboring pathogenic genus, as determined by the network analysis, and was highly abundant after the treatment. The altered microbial community was the major contributing factor shaping antibiotic resistome. This study might provide a comprehensive insight into the distribution profiles of ARGs and pathogens from the gut of inpatients throughout the HWW treatment system, which could be used as a reference for optimizing HWW treatment and monitoring public risk.


Assuntos
Antibacterianos , Purificação da Água , Humanos , Genes Bacterianos , Bactérias/genética , Águas Residuárias/microbiologia , Fezes , Hospitais
15.
BMC Vet Res ; 18(1): 373, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36253821

RESUMO

BACKGROUND: The existing detection methods for porcine circovirus type 2 (PCV2) specific antibodies in serum cannot determine the infection status, thus it is necessary to establish a method for detecting PCV2 antigen. The capsid protein (CAP) of PCV2, as a major structural protein that plays a significant role in viral replication and in inducing host's immune response, is an ideal target antigen to monitor PCV2 infection. Therefore, a gold immunochromatographic assay (GICA) for rapid detection of PCV2 antigen based on the polyclonal antibodies (PAbs) against PCV2-CAP will be developed. RESULTS: The truncated CAP protein (dCAP) was used to immunize rabbits to generate anti-serum. After preliminary purification by caprylic acid/ammonium sulfate precipitation (CAAS), specific PAbs were purified by affinity chromatography column coupled with dCAP and its titer was about two-fold higher than preliminary purified PAbs. Colloidal gold-PAbs conjugate was synthesized under the optimum conditions. The specific anti-dCAP PAbs and goat anti-rabbit antibody (GAR) were then sprayed onto nitrocellulose (NC) membrane as a test line (TL) and a control line (CL), respectively. The visual limit detection (vLOD) of the GICA strips was 5 ng/mL. Specificity assay indicated that the GICA strips had specifically detected PCV2 and was not reactive for porcine epidemic diarrhea virus (PEDV), pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV) or classic swine fever virus (CSFV). A total of 36 porcine serum samples were detected by this GICA and commercial enzyme-linked immunosorbent assay (ELISA) Kit, 9 positive samples were found by the developed strip with the rate of 25.0% comparing with 11 positive samples detected by the commercially ELISA Kit which positive rate was 30.5%, and the receiver operating characteristic (ROC) curve revealed that the relative sensitivity and specificity of this GICA strip were 72.7 and 96.0%, respectively, with an area of 87.2%. CONCLUSIONS: This study established an efficient detection method with high sensitivity and specificity for the clinical diagnosis of PCV2 antigen, that will facilitate a rapid and convenient way to evaluate the infection status of vaccinated pigs.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Sulfato de Amônio , Animais , Anticorpos Antivirais , Proteínas do Capsídeo , Infecções por Circoviridae/diagnóstico , Infecções por Circoviridae/veterinária , Colódio , Coloide de Ouro/química , Imunoensaio/veterinária , Coelhos , Suínos
16.
Bioengineering (Basel) ; 9(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36004920

RESUMO

The immune system may aberrantly silence when against "altered self", which consequently may develop into malignancies. With the development of tumor immunology and molecular biology, the deepened understanding of the relationship between parasites and tumors shifts the attitude towards parasitic pathogens from elimination to utilization. In recent years, the antitumor impact implemented by protozoan parasites and the derived products has been confirmed. The immune system is activated and enhanced by some protozoan parasites, thereby inhibiting tumor growth, angiogenesis, and metastasis in many animal models. In this work, we reviewed the available information on the antitumor effect of parasitic infection or induced by parasitic antigen, as well as the involved immune mechanisms that modulate cancer progression. Despite the fact that clinical trials of the protozoan parasites against tumors are limited and the specific mechanisms of the effect on tumors are not totally clear, the use of genetically modified protozoan parasites and derived molecules combined with chemotherapy could be an important element for promoting antitumor treatment in the future.

17.
Chem Commun (Camb) ; 58(66): 9282-9285, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35904065

RESUMO

The construction of vicinal stereogenic centers via the simultaneous formation of two C-C bonds across alkenes under oxidative conditions is a stubborn challenge. Herein, we report a Pd(II)-catalyzed highly enantioselective intermolecular oxidative 1,2-diarylation reaction of internal enamides with aryl boronic acids, enabling the expedient construction of two vicinal stereocenters with excellent diastereo-, and enantioselectivities.


Assuntos
Estresse Oxidativo , Paládio , Catálise , Estrutura Molecular , Paládio/química , Estereoisomerismo
18.
J Zhejiang Univ Sci B ; 23(4): 315-327, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35403386

RESUMO

Toxoplasma gondii is a worldwide parasite that can infect almost all kinds of mammals and cause fatal toxoplasmosis in immunocompromised patients. Apoptosis is one of the principal strategies of host cells to clear pathogens and maintain organismal homeostasis, but the mechanism of cell apoptosis induced by T. gondii remains obscure. To explore the apoptosis influenced by T. gondii, Vero cells infected or uninfected with the parasite were subjected to apoptosis detection and subsequent dual RNA sequencing (RNA-seq). Using high-throughput Illumina sequencing and bioinformatics analysis, we found that pro-apoptosis genes such as DNA damage-inducible transcript 3 (DDIT3), growth arrest and DNA damage-inducible α (GADD45A), caspase-3 (CASP3), and high-temperature requirement protease A2 (HtrA2) were upregulated, and anti-apoptosis genes such as poly(adenosine diphosphate (ADP)-ribose) polymerase family member 3 (PARP3), B-cell lymphoma 2 (Bcl-2), and baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5) were downregulated. Besides, tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1), TRAF2, TNF receptor superfamily member 10b (TNFRSF10b), disabled homolog 2 (DAB2)|-interacting protein (DAB2IP), and inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) were enriched in the upstream of TNF, TNF-related apoptosis-inducing ligand (TRAIL), and endoplasmic reticulum (ER) stress pathways, and TRAIL-receptor 2 (TRAIL-R2) was regarded as an important membrane receptor influenced by T. gondii that had not been previously considered. In conclusion, the T. gondii RH strain could promote and mediate apoptosis through multiple pathways mentioned above in Vero cells. Our findings improve the understanding of the T. gondii infection process through providing new insights into the related cellular apoptosis mechanisms.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Apoptose , Chlorocebus aethiops , Perfilação da Expressão Gênica , Humanos , Mamíferos/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Células Vero , Proteínas Ativadoras de ras GTPase/genética
19.
J Am Chem Soc ; 144(18): 8389-8398, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482430

RESUMO

Enantioselective transformations of olefins are among the most important strategies for the asymmetric synthesis of organic compounds. Chemo-, diastereo-, and stereoselective control of reactions with internal acyclic alkenes for the construction of functionalized acyclic alkanes still remain a persistent challenge. Here, we report a palladium-catalyzed asymmetric regiodivergent Heck-type diarylation of internal acyclic alkenes. The 1,2-diarylation of two accessible acyclic alkenes, cinnamyl carbamates and enamides with diazonium salts and aromatic boronic acids, furnishes products containing vicinal stereogenic centers via the stereospecific formation of carbonyl coordination-assisted transient palladacycles. Moreover, the asymmetric migratory diarylation of enamides enables the formation of incontiguous stereocenters by an interrupted diastereoselective 1,3-chain-walking process. This protocol streamlines access to highly functionalized multisubstituted enantioenriched carbamates and amine derivatives which are embedded in the key biologically active motifs.


Assuntos
Alcenos , Estirenos , Carbamatos , Catálise , Estereoisomerismo
20.
J Med Virol ; 94(4): 1633-1640, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904253

RESUMO

The coronavirus disease 2019 (COVID-19) is outbreaking all over the world. To help fight this disease, it is necessary to establish an effective and rapid detection method. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is involved in viral replication, assembly, and immune regulation and plays an important role in the viral life cycle. Moreover, the N protein also could be a diagnostic factor and potential drug target. Therefore, by synthesizing the N gene sequence of SARS-CoV-2, constructing the pET-28a (+)-N recombinant plasmid, we expressed the N protein in Escherichia coli and obtained 15 monoclonal antibody (mAbs) against SARS-CoV-2-N protein by the hybridomas and ascites, then an immunochromatographic test strip method detecting N antigen was established. In this study, we obtained 14 high-titer and high-specificity monoclonal antibodies, and the test strips exclusively react with the SARS-CoV-2-N protein and no cross-reactivity with other coronavirus and also recognize the recombinant N protein of Delta (B.1.617.2) variant. These mAbs can be used for the early and rapid diagnosis of SARS-CoV-2 infection through serological antigen.


Assuntos
Anticorpos Monoclonais/imunologia , Teste Sorológico para COVID-19/instrumentação , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/sangue , COVID-19/diagnóstico , Teste Sorológico para COVID-19/métodos , Proteínas do Nucleocapsídeo de Coronavírus/sangue , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Imunoensaio , Camundongos , Mutação , Fosfoproteínas/sangue , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA