Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Exp Bot ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745476

RESUMO

Trichomes, specialized hair-like structures in the epidermal cells of the aboveground parts of plants, protect plants from pests and pathogens and produce valuable metabolites. Chrysanthemum morifolium, used in tea products, has ornamental and medicinal value. However, it is susceptible to Alternaria alternata fungal infection, posing a threat to its production and use, resulting in substantial economic losses. Increasing the density of glandular trichomes enhances disease resistance and improves the production of medicinal metabolites in chrysanthemums. Jasmonate (JA), promotes the formation of glandular trichomes in various plants. However, it remains unclear whether glandular trichome in chrysanthemums are regulated by JA. Grafting, a technique to improve plant resistance to biotic stresses, has been insufficiently explored in its impact on glandular trichomes, terpenoids, and disease resistance. In this study, we demonstrated that grafting with Artemisia vulgaris rootstocks improves the resistance of chrysanthemum scions to A. alternata. Heterografted chrysanthemums exhibited higher trichome density and terpenoid content compared to self-grafted counterparts. Transcriptome analysis highlighted the significant role of CmJAZ1-like in disease resistance in heterografted chrysanthemums. Overexpressing CmJAZ1-like lines exhibited sensitivity to A. alternate, characterized by reduced glandular trichome density and limited terpenoids. Conversely, silencing lines exhibited resistance to A. alternata showcasing increased glandular trichome density and abundant terpenoids. Higher JA content was confirmed in heterografted chrysanthemum scions compared to self-grafted ones. Furthermore, we established that JA promotes the development of glandular trichomes and the synthesis of terpenoids while inducing the degradation of CmJAZ1-like proteins in chrysanthemums. These findings suggest that higher JA increases trichome density and terpenoid content, enhancing resistance to A. alternata by regulating CmJAZ1-like in heterografted chrysanthemums.

2.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2828-2840, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812182

RESUMO

The food security of China as a big agricultural country is attracting increasing attention. With the progress in the traditional Chinese medicine industry, Chinese medicinal materials and their preparations have been gradually developed as agents for disease prevention and with antimicrobial and insecticidal functions in agriculture. Promoting pesticide innovation by interdisciplinary integration has become the trend in pesticide research globally. Considering the increasingly important roles of green pesticides from traditional Chinese medicines and artificial intelligence in pest target prediction, this paper proposed an innovative green control strategy in line with the concepts of ecological sustainable development and food security protection. CiteSpace was used for visual analysis of the publications. The results showed that artificial intelligence had been extensively applied in the pesticide field in recent years. This paper explores the application and development of biopesticides for the first time, with focus on the plant-derived pesticides. The thought of traditional Chinese medicine compatibility can be employed to creat a new promosing field: pesticides from traditional Chinese medicine. Moreover, artificial intelligence can be employed to build the formulation system of pesticides from traditional Chinese medicines and the target prediction system of diseases and pests. This study provides new ideas for the future development and market application of biopesticides, aiming to provide more healthy and safe agricultural products for human beings, promote the innovation and development of green pesticides in China, and protect the sustainable development of the environment and ecosystem. This may be the research hotspot and competition point for the green development of the pesticide industry chain in the future.


Assuntos
Inteligência Artificial , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Praguicidas , Praguicidas/química , Medicamentos de Ervas Chinesas/química , Animais , Química Verde/métodos , Humanos
3.
Plants (Basel) ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960083

RESUMO

The chrysanthemum is widely used as a cut flower, potted flower, and garden flower worldwide and has high ornamental, edible, and medicinal value. The flower heads, composed of ray florets and disc florets, are the most diverse in terms of morphology among ornamental plants. Here, we compared and analyzed the developmental processes of different capitulum types as well as ray florets and disc florets. Morphological differentiation of the two florets occurred on the dorsal domain of the petals at stage Ⅳ of flower development, and differences in stamen development occurred at stage Ⅴ. The dorsal domain of the ray florets and the early stage of flower development were also an essential site and period, respectively, for the differences among capitulum types. In situ hybridization revealed that CmCYC2c, whose homologs are involved in the specification of floret identity in Asteraceae, was expressed in both the dorsal and ventral domains of the ray petals in the tubular-type chrysanthemum, whereas, it was differentially transcribed in the ray petals of flat- and spoon-type chrysanthemum cultivars and had lower or no expression in the dorsal domain and higher expression in the ventral domain at stage Ⅳ. Our study indicates that the expression pattern of CmCYC2c on the dorsal domain of the ray floret at stage Ⅳ contributes to the formation of diverse flower head types in chrysanthemums.

4.
Plant Sci ; 336: 111863, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683984

RESUMO

Flowering time and floret numbers are important ornamental characteristics of chrysanthemums that control their adaptability and inflorescence morphology, respectively. The FRUITFULL (FUL) gene plays a key role in inducing flowering and inflorescence meristem development. In this study, we isolated a homolog of the MADS-box gene FUL, CmFUL-Like 1 (CmFL1), from chrysanthemum inflorescence buds. Quantitative RT-PCR and in situ analyses showed that CmFL1 was strongly expressed in young inflorescence buds. Overexpression of CmFL1 caused early flowering while co-suppression expression of CmFL1 increased the number of florets. Furthermore, the floral promoting factors CmSOC1, CmFDL1, and CmLFY were up-regulated in the shoot tips of transgenic plants. In addition, RNA-seq analysis of the transgenic plants suggested that certain differentially expressed genes (DEGs)-such as MADS-box, homeobox family, and ethylene pathway genes-may be involved in the inflorescence meristem development. GO pathway enrichment analysis showed that the differentially transcribed genes enriched the representation of the carbohydrate metabolic pathway, which is critical for flower development. Overall, our findings revealed the conserved function of CmFL1 in controlling flowering time along with a novel function in regulating the number of florets.


Assuntos
Chrysanthemum , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inflorescência/genética , Inflorescência/metabolismo , Regulação da Expressão Gênica de Plantas/genética
5.
Colloids Surf B Biointerfaces ; 229: 113432, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422992

RESUMO

Herein, folic acid conjugated poly (NIPAM-co-functional palygorskite-Au-co-acrylic acid) (FA-PNFA) hybrid microgels were fabricated by emulsion polymerization. The introduction of acrylic acid can increase the low critical solution temperature (LCST) of FA-PNFA from 36 °C at pH 5.5-42 °C at pH 7.4. Doxorubicin hydrochloride (DOX) was chosen as the load drug, the results show that the DOX release behavior is driven by temperature, pH and light. Cumulative drug release rate can reach 74 % at 37 °C and pH 5.5 while only 20 % at 37 °C and pH 7.4, which effectively avoided the early leakage of the drug. In addition, by exposing FA-PNFA hybrid microgels to laser irradiation, the cumulative release rate was increased by 5 % compared to the release rate under dark conditions. Functional palygorskite-Au as physical crosslinkers not only improves the drug loading content of microgels but also promotes the release of DOX through light drive. Methyl thiazolyl tetrazolium bromide (MTT) assay demonstrated that the FA-PNFA are nontoxic up to 200 µg mL-1 towards 4T1 breast cancer cell. Meanwhile, DOX-loaded FA-PNFA show more significant cytotoxicity than the free DOX. Confocal laser scanning microscope (CLSM) revealed that the DOX-loaded FA-PNFA could be efficiently taken by 4T1 breast cancer cells. FA-PNFA hybrid microgels not only improve the LCST of PNIPAM, but also endow the microgels with photostimulation responsiveness, which can release drugs in response to the triple stimulation response of temperature, pH and light, thus effectively reducing the activity of cancer cells, making them more promising for wider medical applications.


Assuntos
Neoplasias da Mama , Microgéis , Humanos , Feminino , Portadores de Fármacos/química , Temperatura , Ácido Fólico/química , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/farmacologia , Doxorrubicina/química , Concentração de Íons de Hidrogênio
6.
Nat Commun ; 14(1): 2021, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37037808

RESUMO

Chrysanthemum (Chrysanthemum morifolium Ramat.) is a globally important ornamental plant with great economic, cultural, and symbolic value. However, research on chrysanthemum is challenging due to its complex genetic background. Here, we report a near-complete assembly and annotation for C. morifolium comprising 27 pseudochromosomes (8.15 Gb; scaffold N50 of 303.69 Mb). Comparative and evolutionary analyses reveal a whole-genome triplication (WGT) event shared by Chrysanthemum species approximately 6 million years ago (Mya) and the possible lineage-specific polyploidization of C. morifolium approximately 3 Mya. Multilevel evidence suggests that C. morifolium is likely a segmental allopolyploid. Furthermore, a combination of genomics and transcriptomics approaches demonstrate the C. morifolium genome can be used to identify genes underlying key ornamental traits. Phylogenetic analysis of CmCCD4a traces the flower colour breeding history of cultivated chrysanthemum. Genomic resources generated from this study could help to accelerate chrysanthemum genetic improvement.


Assuntos
Chrysanthemum , Chrysanthemum/genética , Filogenia , Melhoramento Vegetal , Perfilação da Expressão Gênica , Flores/genética , Cromossomos
7.
Angew Chem Int Ed Engl ; 62(22): e202303656, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37016511

RESUMO

Stable isotope chemical labeling methods have been widely used for high-throughput mass spectrometry (MS)-based quantitative proteomics in biological and clinical applications. However, the existing methods are far from meeting the requirements for high sensitivity detection. In the present study, a novel isobaric stable isotope N-phosphorylation labeling (iSIPL) strategy was developed for quantitative proteome analysis. The tryptic peptides were selectively labeled with iSIPL tag to generate the novel reporter ions containing phosphoramidate P-N bond with high intensities under lower collision energies. iSIPL strategy are suitable for peptide sequencing and quantitative analysis with high sensitivity and accuracy even for samples of limited quantity. Furthermore, iSIPL coupled with affinity purification and mass spectrometry was applied to measure the dynamics of cyclin dependent kinase 9 (CDK9) interactomes during transactivation of the HIV-1 provirus. The interaction of CDK9 with PARP13 was found to significantly decrease during Tat-induced activation of HIV-1 gene transcription, suggesting the effectiveness of iSIPL strategy in dynamic analysis of protein-protein interaction in vivo. More than that, the proposed iSIPL strategy would facilitate large-scale accurate quantitative proteomics by increasing multiplexing capability.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Fosforilação , Peptídeos/química , Marcação por Isótopo/métodos , Isótopos
8.
Mar Drugs ; 21(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36976207

RESUMO

Marine toxins (MTs) are a group of structurally complex natural products with unique toxicological and pharmacological activities. In the present study, two common shellfish toxins, okadaic acid (OA) (1) and OA methyl ester (2), were isolated from the cultured microalgae strain Prorocentrum lima PL11. OA can significantly activate the latent HIV but has severe toxicity. To obtain more tolerable and potent latency reversing agents (LRAs), we conducted the structural modification of OA by esterification, yielding one known compound (3) and four new derivatives (4-7). Flow cytometry-based HIV latency reversal activity screening showed that compound 7 possessed a stronger activity (EC50 = 46 ± 13.5 nM) but was less cytotoxic than OA. The preliminary structure-activity relationships (SARs) indicated that the carboxyl group in OA was essential for activity, while the esterification of carboxyl or free hydroxyls were beneficial for reducing cytotoxicity. A mechanistic study revealed that compound 7 promotes the dissociation of P-TEFb from the 7SK snRNP complex to reactivate latent HIV-1. Our study provides significant clues for OA-based HIV LRA discovery.


Assuntos
Dinoflagellida , Infecções por HIV , HIV-1 , Humanos , Ácido Okadáico/toxicidade , Latência Viral , Toxinas Marinhas/química , Dinoflagellida/química
9.
Plant J ; 112(6): 1489-1506, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377371

RESUMO

Petals are the second floral whorl of angiosperms, exhibiting astonishing diversity in their size between and within species. This variation is essential for protecting their inner reproductive organs and attracting pollinators for fertilization. However, currently, the genetic and developmental control of petal size remains unexplored. Chrysanthemum (Chrysanthemum morifolium) belongs to the Asteraceae family, the largest group of angiosperms, and the extraordinary diversity of petal size in chrysanthemums makes it an ideal model for exploring the regulation mechanism of petal size. Here, we reveal that overexpression of a JAZ repressor CmJAZ1-like exhibits decreased petal size compared to that of the wild-type as a result of repressed cell expansion. Through further in-depth exploration, we confirm an interaction pair between CmJAZ1-like and the bHLH transcription factor CmBPE2. The inhibition of CmBPE2 expression negatively regulates petal size by downregulating the expression of genes involved in cell expansion. Furthermore, CmJAZ1-like significantly reduced the activation ability of CmBPE2 on its target gene CmEXPA7 by directly interacting with it, thus participating in the regulation of petal size development in chrysanthemum. Our results will provide insights into the molecular mechanisms of petal size regulation in flowering plants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Chrysanthemum , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores , Chrysanthemum/genética , Chrysanthemum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Plant Physiol ; 190(4): 2484-2500, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36214637

RESUMO

YABBY (YAB) genes are specifically expressed in abaxial cells of lateral organs and determine abaxial cell fate. However, most studies have focused on few model plants, and the molecular mechanisms of YAB genes are not well understood. Here, we identified a YAB transcription factor in chrysanthemum (Chrysanthemum morifolium), Dwarf and Robust Plant (CmDRP), that belongs to a distinct FILAMENTOUS FLOWER (FlL)/YAB3 sub-clade lost in Brassicaceae. CmDRP was expressed in various tissues but did not show any polar distribution in chrysanthemum. Overexpression of CmDRP resulted in a semi-dwarf phenotype with a significantly decreased active GA3 content, while reduced expression generated the opposite phenotype. Furthermore, plant height of transgenic plants was partially rescued through the exogenous application of GA3 and Paclobutrazol, and expression of the GA biosynthesis gene CmGA3ox1 was significantly altered in transgenic plants. Yeast one-hybrid, luciferase, and chromatin immunoprecipitation-qPCR analyses showed that CmDRP could directly bind to the CmGA3ox1 promoter and suppress its expression. Our research reveals a nonpolar expression pattern of a YAB family gene in dicots and demonstrates it regulates plant height through the GA pathway, which will deepen the understanding of the genetic and molecular mechanisms of YAB genes.


Assuntos
Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
J Pers Med ; 12(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35207627

RESUMO

(1) Background: Posterior circulation ischemic stroke has high mortality and disability rates and requires an early prediction prognosis to provide the basis for an interventional approach. Current quantitative measures are only able to accurately assess the prognosis of patients using magnetic resonance imaging (MRI). However, it is difficult to obtain MRI images in critically urgent cases. Therefore, the development of a noncontrast CT-based rapid-assist tool is needed to enhance the value of the clinical application. (2) Objective: This study aimed to develop an auxiliary-annotating noncontrast CT-efficient tool, which is based on a deep learning model, to provide a quantitative scale and the prognosis of posterior circulation ischemic stroke patients. (3) Methods: A total of 31 patients with posterior circulation ischemic stroke, diagnosed in the stroke registry at the Tri-Service General Hospital from November 2019 to July 2020, were included in the study, with a total of 578 CT images collected from noncontrast CT and MRI that were ≤ 3 days apart. A 5-fold cross validation was used to develop an image segmentation model to identify nine posterior circulation structures, and intersection over union (IoU) was used to assess the ability of the model to identify each structure. A quantitative score was integrated to assess the importance of the proportion of ischemic lesions in each posterior circulation structure, and the ROC curve was compared with the semiquantitative score for prognostic power. The prognoses of the patients were defined into two groups of 18 patients. An mRS score of 0-2 at discharge was defined as a good prognosis, while an mRS score of 3-6 was deemed to be a poor prognosis. (4) Results: The performance of the image segmentation model for identifying the nine posterior circulation structures in noncontrast CT images was evaluated. The IoU of the left cerebellum was 0.78, the IoU of the right cerebellum was 0.79, the IoU of the left occipital lobe was 0.74, the IoU of the right occipital lobe was 0.68, the IoU of the left thalamus was 0.73, the IoU of the right thalamus was 0.75, the IoU of the medulla oblongata was 0.82, and the IoU of the midbrain was 0.83. The prognostic AUC of posterior circulation patients predicted using a quantitative integrated score was 0.74, which was significantly higher than that of the pc-ASPECTS (AUC = 0.63, p = 0.035), with a sensitivity of 0.67 and a specificity of 0.72. (5) Conclusions: In this study, a deep learning model was used to develop a noncontrast CT-based quantitative integrated score tool, which is an effective tool for clinicians to assess the prognosis of posterior circulation ischemic stroke.

12.
Plant Cell Environ ; 45(5): 1442-1456, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040157

RESUMO

The timely transition from vegetative to reproductive development is coordinated through the quantitative regulation of floral pathway genes in response to physiological and environmental cues. The function of ethylene-responsive element-binding protein (ERF) transcription factors in the regulation of flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) is not well understood. Here, chrysanthemum overexpressing CmERF110 flowered earlier than the wild-type plants, while those in which CmERF110 was suppressed flowered later. RNA-seq results revealed that several genes involved in the circadian rhythm were transcribed differently in CmERF110 transgenic plants from that of the wild-type plants. The rhythm peak of the circadian clock genes in transgenic plants was delayed. Yeast two-hybrid screening of CmERF110 interactors identified a chrysanthemum FLOWERING LOCUS KH DOMAIN (FLK) homologue CmFLK, which was further confirmed with both in vitro and in vivo assays. KEGG pathway enrichment also revealed that CmFLK is involved in the regulation of circadian rhythm-related genes. CmFLK transgenic plants showed a change in flowering time and delayed rhythm peak of the circadian rhythm genes. Taken together, the present data not only suggest that CmERF110 interacts with CmFLK to promote floral transition by tuning the circadian clock, but also provides evidence for the evolutionary conservation of the components in the autonomous pathway in chrysanthemum.


Assuntos
Proteínas de Arabidopsis , Chrysanthemum , Proteínas de Arabidopsis/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Ritmo Circadiano/genética , Etilenos , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Exp Bot ; 73(8): 2403-2419, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35090011

RESUMO

Stem mechanical strength is one of the most important agronomic traits that affects the resistance of plants against insects and lodging, and plays an essential role in the quality and yield of plants. Several transcription factors regulate mechanical strength in crops. However, mechanisms of stem strength formation and regulation remain largely unexplored, especially in ornamental plants. In this study, we identified an atypical bHLH transcription factor CmHLB (HLH PROTEIN INVOLVED IN LIGNIN BIOSYNTHESIS) in chrysanthemum, belonging to a small bHLH sub-family - the PACLOBUTRAZOL RESISTANCE (PRE) family. Overexpression of CmHLB in chrysanthemum significantly increased mechanical strength of the stem, cell wall thickness, and lignin content, compared with the wild type. In contrast, CmHLB RNA interference lines exhibited the opposite phenotypes. RNA-seq analysis indicated that CmHLB promoted the expression of genes involved in lignin biosynthesis. Furthermore, we demonstrated that CmHLB interacted with Chrysanthemum KNOTTED ARABIDOPSIS THALIANA7 (CmKNAT7) through the KNOX2 domain, which has a conserved function, i.e. it negatively regulates secondary cell wall formation of fibres and lignin biosynthesis. Collectively, our results reveal a novel role for CmHLB in regulating lignin biosynthesis by interacting with CmKNAT7 and affecting stem mechanical strength in Chrysanthemum.


Assuntos
Arabidopsis , Chrysanthemum , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Parede Celular/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
14.
J Med Microbiol ; 70(7)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34259621

RESUMO

Introduction. Contamination of specimens and overuse of broad spectrum antibiotics contribute to false positives and false negatives, respectively. Therefore, useful and applicable biomarkers of bacteremia are still required.Hypothesis/Gap Statement. IL-6 can be used as a serum biomarker to discriminate among bacterial infections and fungal infections in febrile patients with a bloodstream infection.Aim. We aimed to evaluate the diagnostic efficiency of neutrophil/lymphocyte ratio (NLR), procalcitonin (PCT) and interleukin-6 (IL-6) in discriminating Gram-negative (G-) bacteria from Gram-positive (G+) bacteria and fungi in febrile patients.Methodology. A total of 567 patients with fever were evaluated. Serum levels of IL-6, PCT, NLR and CRP were compared among a G- group (n=188), a G+ group (n=168), a fungal group (n=38) and a culture negative group (n=173). Sensitivity, specificity, Yuden's index and area under the Receiver operating characteristic (ROC) curve (AUC) were obtained to analyse the diagnostic abilities of these biomarkers in discriminating bloodstream infection caused by different pathogens.Results. Serum IL-6 and PCT in the G- group increased significantly when compared with both the G+ group and fungal group (P <0.05). AUC of IL-6 (0.767, 95 % CI:0.725-0.805) is higher than AUC of PCT (0.751, 95 % CI:0.708-0.796) in discriminating the G- group from G+ group. When discriminating the G- group from fungal group, the AUC of IL-6 (0.695, 95 % CI:0.651-0.747) with a cut-off value of 464.3 pg ml-1 was also higher than the AUC of PCT (0.630, 95 % CI:0.585-0.688) with a cut-off value of 0.68 ng ml-1. Additionally, AUC of NLR (0.685, 95 % CI:0.646-0.727) in discriminating the fungal group from G+ group at the cut-off value of 9.03, was higher than AUC of IL-6, PCT and CRP.Conclusion. This study suggests that IL-6 could be used as a serum biomarker to discriminate among bacterial infections and fungal infections in febrile patients with a bloodstream infection. In addition, NLR is valuable to discriminate fungal infections from Gram-positive infections in febrile patients with a bloodstream infection.


Assuntos
Biomarcadores/sangue , Febre/sangue , Infecções por Bactérias Gram-Negativas/sangue , Infecções por Bactérias Gram-Positivas/sangue , Micoses/sangue , Adolescente , Adulto , Idoso , Contagem de Células Sanguíneas , Proteína C-Reativa/análise , Calcitonina/sangue , Análise Discriminante , Febre/diagnóstico , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Positivas/diagnóstico , Humanos , Interleucina-6/sangue , Linfócitos/citologia , Masculino , Pessoa de Meia-Idade , Micoses/diagnóstico , Neutrófilos/citologia , Curva ROC , Estudos Retrospectivos , Adulto Jovem
15.
Biotechnol J ; 16(10): e2100204, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34328672

RESUMO

Yeast two-hybrid (Y2H) is a classic method of screening for protein-protein interactions. However, the operation process is labor intensive and time consuming, and there is a high possibility of false positives and false negatives. Combined with wet lab operation and bioinformatics analysis, we developed a novel method of Y2H library screening using Chrysanthemum morifolium CmMPK3 as an example. The protocol can not only greatly simplify the steps of traditional Y2H library screening but also identify as many interacting proteins as possible. Furthermore, this protocol is applicable to any species, even if no genomic information is available yet.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mapas de Interação de Proteínas , Biblioteca Gênica , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
16.
Front Genet ; 12: 575830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079576

RESUMO

BACKGROUND: The lack of understanding of molecular pathologies of the solitary functioning kidney makes improving and strengthening the continuity of care between pediatric and adult nephrological patients difficult. Copy number variations (CNVs) account for a molecular cause of solitary functioning kidney, but characterization of the pathogenic genes remains challenging. METHODS: In our prospective cohort study, 99 fetuses clinically diagnosed with a solitary functioning kidney were enrolled and evaluated using chromosomal microarray analysis (CMA). The genetic drivers for the pathogenic CNVs were analyzed. We characterized QPRT localization in fetal kidneys using immunohistochemistry and its expression in adult kidneys using quantitative RT-PCR. Further, QPRT was knocked down using siRNA in human embryonic kidney (HEK293T) cells, and the cell cycle and proliferation were tested. RESULTS: Besides one Triple X syndrome and one Down syndrome, we identified a total of 45 CNVs out of 34 subjects. Among the 14 pathogenic CNVs, CNV 16p11.2 reached the highest number of records with the phenotype of kidney anomalies in the Decipher database. Among the 26 genes within the 16p11.2 region, as a key enzyme for nicotinamide adenine dinucleotide (NAD+) biosynthesis, QPRT was distinctly localized in renal tubules but was barely observed in renal interstitial and glomeruli in fetal kidneys. The loss of QPRT prevented cells' efficient transition into S phase, affected cell-cycle progression, and abrogated proliferation of human embryonic kidney cells. CONCLUSION: Our data suggest that QPRT is a candidate gene associated with susceptibility for solitary functioning kidney. The CNVs discovered in our study exhibit great potential for future applications in genetic counseling and pregnancy management.

17.
Biology (Basel) ; 10(5)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065759

RESUMO

Decapitation is common in horticulture for altering plant architecture. The decapitation of chrysanthemum plants breaks apical dominance and leads to more flowers on lateral branches, resulting in landscape flowers with good coverage. We performed both third- and second-generation transcriptome sequencing of the second buds of chrysanthemum. This third-generation transcriptome is the first sequenced third-generation transcriptome of chrysanthemum, revealing alternative splicing events, lncRNAs, and transcription factors. Aside from the classic hormones, the expression of jasmonate-related genes changed because of this process. Sugars also played an important role in this process, with upregulated expression of sucrose transport-related and TPS genes. We constructed a model of the initial growth of the second buds after decapitation. Auxin export and sugar influx activated the growth of these buds, while the JA-Ile caused by wounding inhibited the expression of CycD genes from 0 h to 6 h. After wound recovery, cytokinins accumulated in the second buds and might have induced ARR12 expression to upregulate CycD gene expression from 6 h to 48 h, together with sugars. Therefore, jasmonates, cytokinins, sugars, and auxin work together to determine the fate of the buds of plants with short internodes, such as chrysanthemum.

18.
Hortic Res ; 8(1): 87, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795661

RESUMO

Chrysanthemum (Chrysanthemum morifolium) is one of the four major cut-flower plants worldwide and possesses both high ornamental value and cultural connotation. As most chrysanthemum varieties flower in autumn, it is costly to achieve annual production. JAZ genes in the TIFY family are core components of the jasmonic acid (JA) signaling pathway; in addition to playing a pivotal role in plant responses to defense, they are also widely implicated in regulating plant development processes. Here, we characterized the TIFY family gene CmJAZ1-like from the chrysanthemum cultivar 'Jinba'. CmJAZ1-like localizes in the nucleus and has no transcriptional activity in yeast. Tissue expression pattern analysis indicated that CmJAZ1-like was most active in the root and shoot apex. Overexpressing CmJAZ1-like with Jas domain deletion in chrysanthemum resulted in late flowering. RNA-Seq analysis of the overexpression lines revealed some differentially expressed genes (DEGs) involved in flowering, such as the homologs of the flowering integrators FT and SOC1, an FUL homolog involved in flower meristem identity, AP2 domain-containing transcription factors, MADS box genes, and autonomous pathway-related genes. Based on KEGG pathway enrichment analysis, the differentially transcribed genes were enriched in carbohydrate metabolic and fatty acid-related pathways, which are notable for their role in flowering in plants. This study preliminarily verified the function of CmJAZ1-like in chrysanthemum flowering, and the results can be used in molecular breeding programs aimed at flowering time regulation of chrysanthemum.

19.
Hortic Res ; 8(1): 79, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33790241

RESUMO

The CmBBX8-CmFTL1 regulatory module is a key determinant in the transition from vegetative growth to reproductive development in summer-flowering chrysanthemum. However, the detailed regulatory mechanism of CmBBX8-mediated flowering remains elusive. In this study, we revealed that RADICAL-INDUCED CELL DEATH 1 (CmRCD1) physically associated with CmBBX8 through bimolecular fluorescence complementation (BiFC), pulldown and Coimmunoprecipitation (CoIP) assays. Furthermore, the RCD1-SRO1-TAF4 (RST) domain of CmRCD1 and the B-box of CmBBX8 mediated their interaction. In addition, Luciferase (LUC) assays and electrophoretic mobility shift assay (EMSAs) showed that CmRCD1 repressed the transcriptional activity of CmBBX8 and interfered with its binding to the CmFTL1 promoter, thereby leading to delayed flowering in the summer chrysanthemum 'Yuuka'. These results provide insight into the molecular framework of CmRCD1-CmBBX8-mediated flowering in chrysanthemum.

20.
Plant Physiol Biochem ; 157: 256-263, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33152644

RESUMO

TOPLESS (TPL)/TOPLESS-related (TPR) corepressors are important regulators of plant growth and development, but their functions in chrysanthemum (Chrysanthemum morifolium) are currently unclear. In this study, a chrysanthemum TPL/TPR family gene, designated CmTPL1-1, was characterized. This gene encodes an 1135-amino-acid polypeptide harboring a conserved N-terminal domain and two C-terminal WD40 domains. CmTPL1-1 showed no transcriptional activity in yeast, and a localization experiment indicated that it localized to the nuclei in onion epidermal cells. Transcript profiling established that the gene was most highly expressed in the stem apex. The heterologous expression of CmTPL1-1 in Arabidopsis thaliana produced a pleiotropic phenotype, including smaller leaves, shorter siliques, increased meristem number, asymmetrical petal distribution and reduced stamen number. In transgenic plants, four AtARFs were downregulated, while six AtIAAs and two AtGH3s were upregulated at the transcript level; moreover, the expression of three key class I KNOTTED-like homeobox (KNOX) genes was upregulated. In addition, by yeast two-hybrid screening of a chrysanthemum cDNA library, we found that CmTPL1-1 could interact with CmWOX4, CmLBD38 and CmLBD36, and these interactions were confirmed by bimolecular fluorescence complementation (BiFC) assays. Overall, we speculated that heterologous expression of CmTPL1-1 regulates plant growth and development by interacting with auxin signaling in Arabidopsis.


Assuntos
Arabidopsis/fisiologia , Chrysanthemum/genética , Proteínas Correpressoras/fisiologia , Meristema/fisiologia , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Proteínas Correpressoras/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA