Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Clin Cancer Res ; 30(10): 2170-2180, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437679

RESUMO

PURPOSE: DNA methylation alterations are widespread in acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS), some of which appear to have evolved independently of somatic mutations in epigenetic regulators. Although the presence of somatic mutations in peripheral blood can predict the risk of development of AML and MDS, its accuracy remains unsatisfactory. EXPERIMENTAL DESIGN: We performed global DNA methylation profiling in a case control study nested within the Singapore Chinese Health Study to evaluate whether DNA methylation alterations were associated with AML/MDS development. Targeted deep sequencing and methylated DNA immunoprecipitation sequencing (MeDIP-seq) were performed on peripheral blood collected a median of 9.9 years before diagnosis of AML or MDS, together with age-matched still-healthy individuals as controls. RESULTS: Sixty-six individuals who developed AML or MDS displayed significant DNA methylation changes in the peripheral blood compared with 167 age- and gender-matched controls who did not develop AML/MDS during the follow-up period. Alterations in methylation in the differentially methylation regions were associated with increased odds of developing AML/MDS. CONCLUSIONS: The epigenetic changes may be acquired independently and before somatic mutations that are relevant for AML/MDS development. The association between methylation changes and the risk of pre-AML/MDS in these individuals was considerably stronger than somatic mutations, suggesting that methylation changes could be used as biomarkers for pre-AML/MDS screening.


Assuntos
Metilação de DNA , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/diagnóstico , Estudos de Casos e Controles , Idoso , Adulto , Epigênese Genética , Singapura/epidemiologia , Mutação , Predisposição Genética para Doença , Fatores de Risco
2.
Cancers (Basel) ; 15(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958433

RESUMO

MicroRNAs (MiRNAs) are small, non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We analyzed the differential expression of miRNAs in 119 endometrial carcinomas, measuring their expression in histological subtypes, molecular subtypes, and tumors with CTNNB1 mutations. Tumors were subdivided into histological and molecular subtypes as defined by The Cancer Genome Atlas. The expression levels of 352 miRNAs were quantified using the PanoramiR panel. Mir-449a, mir-449b-5p, and mir-449c-5p were the top three miRNAs showing increased expression in both endometrioid and de-differentiated carcinomas but were not significantly increased in serous and clear cell carcinomas. The miRNAs with the most increased expression in serous and clear cell carcinomas were miR-9-3p and miR-375, respectively. We also identified 62 differentially expressed miRNAs among different molecular subtypes. Using sequential forward selection, we built subtype classification models for some molecular subtypes of endometrial carcinoma, comprising 5 miRNAs for MMR-deficient tumors, 10 miRNAs for p53-mutated tumors, and 3 miRNAs for CTNNB1-mutated tumors, with areas under curves of 0.75, 0.85, and 0.78, respectively. Our findings confirm the differential expression of miRNAs between various endometrial carcinoma subtypes and may have implications for the development of diagnostic and prognostic tools.

3.
Theranostics ; 13(2): 621-638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632230

RESUMO

Rationale: Metastasis is a complex process with a molecular underpinning that remains unclear. We hypothesize that cargo proteins conducted by extracellular vesicles (EVs) released from tumors may confer growth and metastasis potential on recipient cells. Here, we report that a cytokine-like secreted protein, FAM3C, contributes to late-stage lung tumor progression. Methods: EV protein profiling was conducted with an unbiased proteomic mass spectrometry analysis on non-small cell lung cancer (NSCLC) and normal lung fibroblast cell lines. Expression of FAM3C was confirmed in a panel of NSCLC cell lines, and correlated to the invasive and metastatic potentials. Functional phenotype of endogenous FAM3C and tumor-derived EVs (TDEs) were further investigated using various biological approaches in RNA and protein levels. Metastasis potential of TDEs secreted by FAM3C-overexpressing carcinoma cells was validated in mouse models. Results: Transcriptomic meta-analysis of pan-cancer datasets confirmed the overexpression of FAM3C - a gene encoding for interleukin-like EMT inducer (ILEI) - in NSCLC tumors, with strong association with poor patient prognosis and cancer metastasis. Aberrant expression of FAM3C in lung carcinoma cells enhances cellular transformation and promotes distant lung tumor colonization. In addition, higher FAM3C concentrations were detected in EVs extracted from plasma samples of NSCLC patients compared to those of healthy subjects. More importantly, we defined a hitherto-unknown mode of microenvironmental crosstalk involving FAM3C in EVs, whereby the delivery and uptake of FAM3C via TDEs enhances oncogenic signaling - in recipient cells that phenocopies the cell-endogenous overexpression of FAM3C. The oncogenicity transduced by FAM3C is executed via a novel interaction with the Ras-related protein RalA, triggering the downstream activation of the Src/Stat3 signaling cascade. Conclusions: Our study describes a novel mechanism for FAM3C-driven carcinogenesis and shed light on EV FAM3C as a driver for metastatic lung tumors that could be exploited for cancer therapeutics.


Assuntos
Carcinogênese , Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/secundário , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteômica
4.
Cancer Res ; 83(6): 922-938, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638333

RESUMO

Despite the remarkable clinical responses achieved with immune checkpoint blockade therapy, the response rate is relatively low and only a subset of patients can benefit from the treatment. Aberrant RNA accumulation can mediate IFN signaling and stimulate an immune response, suggesting that targeting RNA decay machinery might sensitize tumor cells to immunotherapy. With this in mind, we identified an RNA exoribonuclease, XRN1, as a potential therapeutic target to suppress RNA decay and stimulate antitumor immunity. Silencing of XRN1 suppressed tumor growth in syngeneic immunocompetent mice and potentiated immunotherapy efficacy, while silencing of XRN1 alone did not affect tumor growth in immunodeficient mice. Mechanistically, XRN1 depletion activated IFN signaling and the viral defense pathway; both pathways play determinant roles in regulating immune evasion. Aberrant RNA-sensing signaling proteins (RIG-I/MAVS) mediated the expression of IFN genes, as depletion of each of them blunted the elevation of antiviral/IFN signaling in XRN1-silenced cells. Analysis of pan-cancer CRISPR-screening data indicated that IFN signaling triggered by XRN1 silencing is a common phenomenon, suggesting that the effect of XRN1 silencing may be extended to multiple types of cancers. Overall, XRN1 depletion triggers aberrant RNA-mediated IFN signaling, highlighting the importance of the aberrant RNA-sensing pathway in regulating immune responses. These findings provide the molecular rationale for developing XRN1 inhibitors and exploring their potential clinical application in combination with cancer immunotherapy. SIGNIFICANCE: Targeting XRN1 activates an intracellular innate immune response mediated by RNA-sensing signaling and potentiates cancer immunotherapy efficacy, suggesting inhibition of RNA decay machinery as a novel strategy for cancer treatment.


Assuntos
Neoplasias , RNA , Animais , Camundongos , Exonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Estabilidade de RNA , Transdução de Sinais
5.
Mol Cancer Res ; 20(4): 637-649, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022315

RESUMO

KDM6A, an X chromosome-linked histone lysine demethylase, was reported to be frequently mutated in many tumor types including breast and bladder cancer. However, the functional role of KDM6A is not fully understood. Using MCF10A as a model of non-tumorigenic epithelial breast cells, we found that silencing KDM6A promoted cell migration and transformation demonstrated by the formation of tumor-like acini in three-dimensional culture. KDM6A loss reduced the sensitivity of MCF10A cells to therapeutic agents commonly used to treat patients with triple-negative breast cancer and also induced TGFß extracellular secretion leading to suppressed expression of cytotoxic genes in normal human CD8+ T cells in vitro. Interestingly, when cells were treated with TGFß, de novo synthesis of KDM6A protein was suppressed while TGFB1 transcription was enhanced, indicating a TGFß/KDM6A-negative regulatory axis. Furthermore, both KDM6A deficiency and TGFß treatment promoted disorganized acinar structures in three-dimensional culture, as well as transcriptional profiles associated with epithelial-to-mesenchymal transition and metastasis, suggesting KDM6A depletion and TGFß drive tumor progression. IMPLICATIONS: Our study provides the preclinical rationale for evaluating KDM6A and TGFß in breast tumor samples as predictors for response to chemo and immunotherapy, informing personalized therapy based on these findings.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Bexiga Urinária , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Células Epiteliais/patologia , Feminino , Histona Desmetilases/genética , Humanos , Fator de Crescimento Transformador beta , Neoplasias da Bexiga Urinária/genética
6.
Sci Adv ; 7(32)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34348892

RESUMO

The study of RNA modifications in large clinical cohorts can reveal relationships between the epitranscriptome and human diseases, although this is especially challenging. We developed ModTect (https://github.com/ktan8/ModTect), a statistical framework to identify RNA modifications de novo by standard RNA-sequencing with deletion and mis-incorporation signals. We show that ModTect can identify both known (N 1-methyladenosine) and previously unknown types of mRNA modifications (N 2,N 2-dimethylguanosine) at nucleotide-resolution. Applying ModTect to 11,371 patient samples and 934 cell lines across 33 cancer types, we show that the epitranscriptome was dysregulated in patients across multiple cancer types and was additionally associated with cancer progression and survival outcomes. Some types of RNA modification were also more disrupted than others in patients with cancer. Moreover, RNA modifications contribute to multiple types of RNA-DNA sequence differences, which unexpectedly escape detection by Sanger sequencing. ModTect can thus be used to discover associations between RNA modifications and clinical outcomes in patient cohorts.


Assuntos
Neoplasias , Processamento Pós-Transcricional do RNA , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA
7.
Nat Commun ; 12(1): 4362, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272396

RESUMO

Squamous cell carcinomas (SCCs) comprise one of the most common histologic types of human cancer. Transcriptional dysregulation of SCC cells is orchestrated by tumor protein p63 (TP63), a master transcription factor (TF) and a well-researched SCC-specific oncogene. In the present study, both Gene Set Enrichment Analysis (GSEA) of SCC patient samples and in vitro loss-of-function assays establish fatty-acid metabolism as a key pathway downstream of TP63. Further studies identify sterol regulatory element binding transcription factor 1 (SREBF1) as a central mediator linking TP63 with fatty-acid metabolism, which regulates the biosynthesis of fatty-acids, sphingolipids (SL), and glycerophospholipids (GPL), as revealed by liquid chromatography tandem mass spectrometry (LC-MS/MS)-based lipidomics. Moreover, a feedback co-regulatory loop consisting of SREBF1/TP63/Kruppel like factor 5 (KLF5) is identified, which promotes overexpression of all three TFs in SCCs. Downstream of SREBF1, a non-canonical, SCC-specific function is elucidated: SREBF1 cooperates with TP63/KLF5 to regulate hundreds of cis-regulatory elements across the SCC epigenome, which converge on activating cancer-promoting pathways. Indeed, SREBF1 is essential for SCC viability and migration, and its overexpression is associated with poor survival in SCC patients. Taken together, these data shed light on mechanisms of transcriptional dysregulation in cancer, identify specific epigenetic regulators of lipid metabolism, and uncover SREBF1 as a potential therapeutic target and prognostic marker in SCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/genética , Neoplasias Pulmonares/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Acetilação , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sequenciamento de Cromatina por Imunoprecipitação , Cromatografia Líquida , Epigenômica , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Esofágicas/genética , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Histonas/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Pulmonares/genética , Elementos Reguladores de Transcrição , Transdução de Sinais/genética , Esfingolipídeos/biossíntese , Esfingolipídeos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética , Transcriptoma/genética , Proteínas Supressoras de Tumor/genética
8.
Oncogene ; 40(10): 1851-1867, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33564073

RESUMO

Soft tissue sarcoma (STS) is a heterogeneous disease that arises from connective tissues. Clinical outcome of patients with advanced tumors especially de-differentiated liposarcoma and uterine leiomyosarcoma remains unsatisfactory, despite intensive treatment regimens including maximal surgical resection, radiation, and chemotherapy. MAP kinase-interacting serine/threonine-protein kinase 1 and 2 (MNK1/2) have been shown to contribute to oncogenic translation via phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). However, little is known about the role of MNK1/2 and their downstream targets in STS. In this study, we show that depletion of either MNK1 or MNK2 suppresses cell viability, anchorage-independent growth, and tumorigenicity of STS cells. We also identify a compelling antiproliferative efficacy of a novel, selective MNK inhibitor ETC-168. Cellular responsiveness of STS cells to ETC-168 correlates positively with that of phosphorylated ribosomal protein S6 (RPS6). Mirroring MNK1/2 silencing, ETC-168 treatment strongly blocks eIF4E phosphorylation and represses expression of sarcoma-driving onco-proteins including E2F1, FOXM1, and WEE1. Moreover, combination of ETC-168 and MCL1 inhibitor S63845 exerts a synergistic antiproliferative activity against STS cells. In summary, our study reveals crucial roles of MNK1/2 and their downstream targets in STS tumorigenesis. Our data encourage further clinical translation of MNK inhibitors for STS treatment.


Assuntos
Proteínas de Ciclo Celular/genética , Fator de Transcrição E2F1/genética , Proteína Forkhead Box M1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Sarcoma/tratamento farmacológico , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Sarcoma/genética , Sarcoma/patologia , Tiofenos/farmacologia
9.
Cancer Res ; 81(5): 1216-1229, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33402390

RESUMO

Although obesity is one of the strongest risk factors for esophageal adenocarcinoma, the molecular mechanisms underlying this association remain unclear. We recently identified four esophageal adenocarcinoma-specific master regulator transcription factors (MRTF) ELF3, KLF5, GATA6, and EHF. In this study, gene-set enrichment analysis of both esophageal adenocarcinoma patient samples and cell line models unbiasedly underscores fatty acid synthesis as the central pathway downstream of three MRTFs (ELF3, KLF5, GATA6). Further characterizations unexpectedly identified a transcriptional feedback loop between MRTF and fatty acid synthesis, which mutually activated each other through the nuclear receptor, PPARG. MRTFs cooperatively promoted PPARG transcription by directly regulating its promoter and a distal esophageal adenocarcinoma-specific enhancer, leading to PPARG overexpression in esophageal adenocarcinoma. PPARG was also elevated in Barrett's esophagus, a recognized precursor to esophageal adenocarcinoma, implying that PPARG might play a role in the intestinal metaplasia of esophageal squamous epithelium. Upregulation of PPARG increased de novo synthesis of fatty acids, phospholipids, and sphingolipids as revealed by mass spectrometry-based lipidomics. Moreover, ChIP-seq, 4C-seq, and a high-fat diet murine model together characterized a novel, noncanonical, and cancer-specific function of PPARG in esophageal adenocarcinoma. PPARG directly regulated the ELF3 super-enhancer, subsequently activating the transcription of other MRTFs through an interconnected regulatory circuitry. Together, elucidation of this novel transcriptional feedback loop of MRTF/PPARG/fatty acid synthesis advances our understanding of the mechanistic foundation for epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma. More importantly, this work identifies a potential avenue for prevention and early intervention of esophageal adenocarcinoma by blocking this feedback loop. SIGNIFICANCE: These findings elucidate a transcriptional feedback loop linking epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma, indicating that blocking this feedback loop could be a potential therapeutic strategy in high-risk individuals.


Assuntos
Adenocarcinoma/patologia , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/patologia , Ácidos Graxos/biossíntese , PPAR gama/genética , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Ácidos Graxos/genética , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos Nus , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-ets/metabolismo , Piridinas/farmacologia , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 80(13): 2722-2736, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32332020

RESUMO

Gastrointestinal adenocarcinomas (GIAC) of the tubular gastrointestinal (GI) tract including esophagus, stomach, colon, and rectum comprise most GI cancers and share a spectrum of genomic features. However, the unified epigenomic changes specific to GIAC are poorly characterized. Using 907 GIAC samples from The Cancer Genome Atlas, we applied mathematical algorithms to large-scale DNA methylome and transcriptome profiles to reconstruct transcription factor (TF) networks and identify a list of functionally hyperactive master regulator (MR) TF shared across different GIAC. The top candidate HNF4A exhibited prominent genomic and epigenomic activation in a GIAC-specific manner. A complex interplay between the HNF4A promoter and three distal enhancer elements was coordinated by GIAC-specific MRTF including ELF3, GATA4, GATA6, and KLF5. HNF4A also self-regulated its own promoter and enhancers. Functionally, HNF4A promoted cancer proliferation and survival by transcriptional activation of many downstream targets, including HNF1A and factors of interleukin signaling, in a lineage-specific manner. Overall, our study provides new insights into the GIAC-specific gene regulatory networks and identifies potential therapeutic strategies against these common cancers. SIGNIFICANCE: These findings show that GIAC-specific master regulatory transcription factors control HNF4A via three distal enhancers to promote GIAC cell proliferation and survival. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2722/F1.large.jpg.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Epigenômica , Neoplasias Gastrointestinais/patologia , Regulação Neoplásica da Expressão Gênica , Fator 4 Nuclear de Hepatócito/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Redes Reguladoras de Genes , Genômica , Fator 4 Nuclear de Hepatócito/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Regiões Promotoras Genéticas , Taxa de Sobrevida , Fatores de Transcrição/genética , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Genet ; 11: 590672, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569079

RESUMO

Circular RNAs (circRNAs) are evolutionarily conserved and abundant non-coding RNAs whose functions and regulatory mechanisms remain largely unknown. Here, we identify and characterize an epigenomically distinct group of circRNAs (TAH-circRNAs), which are transcribed to a higher level than their host genes. By integrative analysis of cistromic and transcriptomic data, we find that compared with other circRNAs, TAH-circRNAs are expressed more abundantly and have more transcription factors (TFs) binding sites and lower DNA methylation levels. Concordantly, TAH-circRNAs are enriched in open and active chromatin regions. Importantly, ChIA-PET results showed that 23-52% of transcription start sites (TSSs) of TAH-circRNAs have direct interactions with cis-regulatory regions, strongly suggesting their independent transcriptional regulation from host genes. In addition, we characterize molecular features of super-enhancer-driven circRNAs in cancer biology. Together, this study comprehensively analyzes epigenomic characteristics of circRNAs and identifies a distinct group of TAH-circRNAs that are independently transcribed via enhancers and super-enhancers by TFs. These findings substantially advance our understanding of the regulatory mechanism of circRNAs and may have important implications for future investigations of this class of non-coding RNAs.

12.
Gut ; 69(4): 630-640, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31409603

RESUMO

OBJECTIVE: While oesophageal squamous cell carcinoma remains infrequent in Western populations, the incidence of oesophageal adenocarcinoma (EAC) has increased sixfold to eightfold over the past four decades. We aimed to characterise oesophageal cancer-specific and subtypes-specific gene regulation patterns and their upstream transcription factors (TFs). DESIGN: To identify regulatory elements, we profiled fresh-frozen oesophageal normal samples, tumours and cell lines with chromatin immunoprecipitation sequencing (ChIP-Seq). Mathematical modelling was performed to establish (super)-enhancers landscapes and interconnected transcriptional circuitry formed by master TFs. Coregulation and cooperation between master TFs were investigated by ChIP-Seq, circularised chromosome conformation capture sequencing and luciferase assay. Biological functions of candidate factors were evaluated both in vitro and in vivo. RESULTS: We found widespread and pervasive alterations of the (super)-enhancer reservoir in both subtypes of oesophageal cancer, leading to transcriptional activation of a myriad of novel oncogenes and signalling pathways, some of which may be exploited pharmacologically (eg, leukemia inhibitory factor (LIF) pathway). Focusing on EAC, we bioinformatically reconstructed and functionally validated an interconnected circuitry formed by four master TFs-ELF3, KLF5, GATA6 and EHF-which promoted each other's expression by interacting with each super-enhancer. Downstream, these master TFs occupied almost all EAC super-enhancers and cooperatively orchestrated EAC transcriptome. Each TF within the transcriptional circuitry was highly and specifically expressed in EAC and functionally promoted EAC cell proliferation and survival. CONCLUSIONS: By establishing cancer-specific and subtype-specific features of the EAC epigenome, our findings promise to transform understanding of the transcriptional dysregulation and addiction of EAC, while providing molecular clues to develop novel therapeutic modalities against this malignancy.


Assuntos
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Redes Reguladoras de Genes/fisiologia , Fatores de Transcrição/genética , Adenocarcinoma/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Fator de Transcrição GATA6/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Proteínas Proto-Oncogênicas c-ets/genética
13.
Cancer Res ; 80(2): 219-233, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31551365

RESUMO

ZFP36L1 is a tandem zinc-finger RNA-binding protein that recognizes conserved adenylate-uridylate-rich elements (ARE) located in 3'untranslated regions (UTR) to mediate mRNA decay. We hypothesized that ZFP36L1 is a negative regulator of a posttranscriptional hub involved in mRNA half-life regulation of cancer-related transcripts. Analysis of in silico data revealed that ZFP36L1 was significantly mutated, epigenetically silenced, and downregulated in a variety of cancers. Forced expression of ZFP36L1 in cancer cells markedly reduced cell proliferation in vitro and in vivo, whereas silencing of ZFP36L1 enhanced tumor cell growth. To identify direct downstream targets of ZFP36L1, systematic screening using RNA pull-down of wild-type and mutant ZFP36L1 as well as whole transcriptome sequencing of bladder cancer cells {plus minus} tet-on ZFP36L1 was performed. A network of 1,410 genes was identified as potential direct targets of ZFP36L1. These targets included a number of key oncogenic transcripts such as HIF1A, CCND1, and E2F1. ZFP36L1 specifically bound to the 3'UTRs of these targets for mRNA degradation, thus suppressing their expression. Dual luciferase reporter assays and RNA electrophoretic mobility shift assays showed that wild-type, but not zinc-finger mutant ZFP36L1, bound to HIF1A 3'UTR and mediated HIF1A mRNA degradation, leading to reduced expression of HIF1A and its downstream targets. Collectively, our findings reveal an indispensable role of ZFP36L1 as a posttranscriptional safeguard against aberrant hypoxic signaling and abnormal cell-cycle progression. SIGNIFICANCE: RNA-binding protein ZFP36L1 functions as a tumor suppressor by regulating the mRNA stability of a number of mRNAs involved in hypoxia and cell-cycle signaling.


Assuntos
Neoplasias da Mama/genética , Fator 1 de Resposta a Butirato/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias da Bexiga Urinária/genética , Regiões 3' não Traduzidas/genética , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Fator 1 de Resposta a Butirato/genética , Carcinogênese/genética , Ciclo Celular/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Fator de Transcrição E2F1/genética , Epigênese Genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mutação , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Dedos de Zinco/genética
14.
Oncogene ; 38(34): 6196-6210, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332289

RESUMO

Apoptosis of cancer cells occurs by a complex gene regulatory network. Here we showed that SOX7 was significantly downregulated in different cancer types, especially in lung and breast cancers. Low expression of SOX7 was associated with advantage stage of cancer with shorter overall survival. Cancer cells with loss of SOX7 promoted cell survival and colony formation, suppressed cellular apoptosis and produced a drug resistant phenotype against a variety of chemo/targeting therapeutic agents. Mechanistically, SOX7 induced cellular apoptosis through upregulation of genes associated with both P38 and apoptotic signaling pathway, as well as preventing the proteasome mediated degradation of pro-apoptotic protein BIM. Treatment of either a proteasome inhibitor MG132 or bortezomib, or with a p-ERK/MEK inhibitor U0126 attenuate the SOX7 promoted BIM degradation. We identified Panobinostat, an FDA approved pan-HDAC inhibitor, could elevate and restore SOX7 expression in SOX7 silenced lung cancer cells. Taken together, these data revealed an unappreciated role of SOX7 in regulation of cellular apoptosis through control of MAPK/ERK-BIM signaling.


Assuntos
Apoptose/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias/patologia , Fatores de Transcrição SOXF/fisiologia , Animais , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Sobrevivência Celular/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos SCID , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOXF/genética , Células Tumorais Cultivadas
15.
Nat Commun ; 10(1): 2230, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110180

RESUMO

LNK (SH2B3) is a key negative regulator of JAK-STAT signaling which has been extensively studied in malignant hematopoietic diseases. We found that LNK is significantly elevated in cutaneous melanoma; this elevation is correlated with hyperactive signaling of the RAS-RAF-MEK pathway. Elevated LNK enhances cell growth and survival in adverse conditions. Forced expression of LNK inhibits signaling by interferon-STAT1 and suppresses interferon (IFN) induced cell cycle arrest and cell apoptosis. In contrast, silencing LNK expression by either shRNA or CRISPR-Cas9 potentiates the killing effect of IFN. The IFN-LNK signaling is tightly regulated by a negative feedback mechanism; melanoma cells exposed to IFN upregulate expression of LNK to prevent overactivation of this signaling pathway. Our study reveals an unappreciated function of LNK in melanoma and highlights the critical role of the IFN-STAT1-LNK signaling axis in this potentially devastating disease. LNK may be further explored as a potential therapeutic target for melanoma immunotherapy.


Assuntos
Interferons/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melanoma/patologia , Proteínas/metabolismo , Neoplasias Cutâneas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Interferons/imunologia , Melanoma/imunologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Fator de Transcrição STAT1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 10(1): 1353, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903020

RESUMO

Liposarcomas (LPSs) are a group of malignant mesenchymal tumors showing adipocytic differentiation. Here, to gain insight into the enhancer dysregulation and transcriptional addiction in this disease, we chart super-enhancer structures in both LPS tissues and cell lines. We identify a bromodomain and extraterminal (BET) protein-cooperated FUS-DDIT3 function in myxoid LPS and a BET protein-dependent core transcriptional regulatory circuitry consisting of FOSL2, MYC, and RUNX1 in de-differentiated LPS. Additionally, SNAI2 is identified as a crucial downstream target that enforces both proliferative and metastatic potentials to de-differentiated LPS cells. Genetic depletion of BET genes, core transcriptional factors, or SNAI2 mitigates consistently LPS malignancy. We also reveal a compelling susceptibility of LPS cells to BET protein degrader ARV-825. BET protein depletion confers additional advantages to circumvent acquired resistance to Trabectedin, a chemotherapy drug for LPS. Moreover, this study provides a framework for discovering and targeting of core oncogenic transcriptional programs in human cancers.


Assuntos
Lipossarcoma/genética , Proteínas de Neoplasias/metabolismo , Transcrição Gênica , Animais , Azepinas/farmacologia , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Genoma Humano , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Fusão Oncogênica/metabolismo , Talidomida/análogos & derivados , Talidomida/farmacologia , Transcrição Gênica/efeitos dos fármacos
19.
J Cancer ; 9(24): 4762-4773, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588262

RESUMO

This study is an unbiased genomic screen to obtain functional targets for increased effectiveness of dasatinib in pancreatic cancer. Dasatinib, a multi-targeted tyrosine kinase inhibitor, is used in clinical trials for treatment of pancreatic cancer; however, intrinsic and acquired resistance often occurs. We used a dasatinib-resistant pancreatic cancer cell line SU8686 to screen for synthetic lethality that synergizes with dasatinib using a pooled human shRNA library followed by next generation sequencing. Novel genes were identified which when silenced produced a prominent inhibitory effect with dasatinib against the pancreatic cancer cells. Several of these genes are involved in the regulation of epigenetics, as well as signaling pathways of the FOXO and hedgehog families. Small molecule inhibitors of either histone deacetylases or nuclear exporter had marked inhibitory effect with dasatinib in pancreatic cancers, suggesting their potential therapeutic effectiveness in this deadly cancer.

20.
BMC Cancer ; 18(1): 940, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285677

RESUMO

BACKGROUND: Clonal VDJ rearrangement of B/T cell receptors (B/TCRs) occurring during B/T lymphocyte development has been used as a marker to track the clonality of B/T cell populations. METHODS: We systematically profiled the B/T cell receptor repertoire of 936 cancer cell lines across a variety of cancer types as well as 462 Epstein-Barr Virus (EBV) transformed normal B lymphocyte lines using RNA sequencing data. RESULTS: Rearranged B/TCRs were readily detected in cell lines derived from lymphocytes, and subclonality or potential biclonality were found in a number of blood cancer cell lines. Clonal BCR/TCR rearrangements were detected in several blast phase CML lines and unexpectedly, one gastric cancer cell line (KE-97), reflecting a lymphoid origin of these cells. Notably, clonality was highly prevalent in EBV transformed B lymphocytes, suggesting either transformation only occurred in a few B cells or those with a growth advantage dominated the transformed population through clonal evolution. CONCLUSIONS: Our analysis reveals the complexity and heterogeneity of the BCR/TCR rearrangement repertoire and provides a unique insight into the clonality of lymphocyte derived cell lines.


Assuntos
Neoplasias/genética , RNA/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos B/citologia , Linhagem Celular Tumoral , Neoplasias Hematológicas/genética , Herpesvirus Humano 4/genética , Humanos , Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA