Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Autophagy ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171951

RESUMO

Genome-wide association studies identified variants around the BIN1 (bridging integrator 1) gene locus as prominent risk factors for late-onset Alzheimer disease. In the present study, we decreased the expression of BIN1 in mouse hippocampal neurons to investigate its neuronal function. Bin1 knockdown via RNAi reduced the dendritic arbor size in primary cultured hippocampal neurons as well as in mature Cornu Ammonis 1 excitatory neurons. The AAV-mediated Bin1 RNAi knockdown also generated a significant regional volume loss around the injection sites at the organ level, as revealed by 7-Tesla structural magnetic resonance imaging, and an impaired spatial reference memory performance in the Barnes maze test. Unexpectedly, Bin1 knockdown led to concurrent activation of both macroautophagy/autophagy and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Autophagy inhibition with the lysosome inhibitor chloroquine effectively mitigated the Bin1 knockdown-induced dendritic regression. The subsequent molecular study demonstrated that increased expression of ULK3 (unc-51 like kinase 3), which is MTOR-insensitive, supported autophagosome formation in BIN1 deficiency. Reducing ULK3 activity with SU6668, a receptor tyrosine kinase inhibitor, or decreasing neuronal ULK3 expression through AAV-mediated RNAi, significantly attenuated Bin1 knockdown-induced hippocampal volume loss and spatial memory decline. In Alzheimer disease patients, the major neuronal isoform of BIN1 is specifically reduced. Our work suggests this reduction is probably an important molecular event that increases the autophagy level, which might subsequently promote brain atrophy and cognitive impairment through reducing dendritic structures, and ULK3 is a potential interventional target for relieving these detrimental effects.

2.
STAR Protoc ; 5(2): 103023, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38640064

RESUMO

Social cooperation is fundamentally important for group animals but rarely studied in mice because of their natural aggressiveness. Here, we present a new water-reward assay to investigate mutualistic cooperative behavior in mice. We describe the construction of the apparatus and provide details of the procedures and analysis for investigators to characterize and quantify the mutualistic cooperative behavior. This protocol has been validated in mice and can be used for investigating mechanisms of cooperation. For complete details on the use and execution of this protocol, please refer to Zhang et al. and Wang et al.1,2.


Assuntos
Comportamento Animal , Comportamento Cooperativo , Recompensa , Animais , Camundongos , Comportamento Animal/fisiologia , Água , Masculino
3.
Lab Anim (NY) ; 52(2): 37-50, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646797

RESUMO

Adolescent social neglect impairs social performance, but the underlying molecular mechanisms remain unclear. Here we report that isolation rearing of juvenile mice caused cooperation defects that were rescued by immediate social reintroduction. We also identified the transcription factor early growth response 2 (Egr2) in the medial prefrontal cortex (mPFC) as a major target of social isolation and resocialization. Isolation rearing increased corticosteroid production, which reduced the expression of Egr2 in the mPFC, including in oligodendrocytes. Overexpressing Egr2 ubiquitously in the mPFC, but not specifically in neurons nor in oligodendroglia, protected mice from the isolation rearing-induced cooperation defect. In addition to synapse integrity, Egr2 also regulated the development of oligodendroglia, specifically the transition from undifferentiated oligodendrocyte precursor cells to premyelinating oligodendrocytes. In conclusion, this study reveals the importance of mPFC Egr2 in the cooperative behavior that is modulated by social experience, and its unexpected role in oligodendrocyte development.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce , Isolamento Social , Animais , Camundongos , Neurônios , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Comportamento Animal
4.
Brain Behav Immun ; 108: 16-31, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427805

RESUMO

Increasing evidence supports the involvement of the peripheral immune system in the pathogenesis of Alzheimer's disease (AD). In the present study, we found that B lymphocytes could mitigate beta-Amyloid (Aß) pathology and memory impairments in a transgenic AD mouse model. Specifically, in young 5 × FAD mice, we evidenced increased B cells in the frontal cortex and meningeal tissues; depletion of mature B cells aggravated these mice's Aß load and memory deficits. The increased B cells produced more interleukin-35 (IL-35) in the front cortex. We further found IL-35 neutralization exacerbated Aß pathology, while injecting IL-35 mitigated Aß load and cognitive dysfunction in 5 × FAD mice with or without mature B cell deficiency. Mechanistically, IL-35 inhibited neuronal BACE1 transcription through modulating the SOCS1/STAT1 pathway, and reduced Aß production accordingly. Reanalysis of the single-cell RNA sequencing data from blood samples of AD patients suggested an increased population of IL-35-producing B cells. Together, the present study revealed a novel effect of B lymphocyte-derived IL-35 on inhibiting Aß production in the frontal cortex, which may serve as a potential target for future AD treatment.


Assuntos
Doença de Alzheimer , Linfócitos B , Interleucinas , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Interleucinas/imunologia , Transtornos da Memória , Camundongos Transgênicos , Linfócitos B/imunologia
5.
Cell Mol Life Sci ; 79(9): 507, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36059036

RESUMO

Patients with autism spectrum disorder (ASD) typically experience substantial social isolation, which may cause secondary adverse effects on their brain development. miR-124 is the most abundant miRNA in the human brain, acting as a pivotal molecule regulating neuronal fate determination. Alterations of miR-124 maturation or expression are observed in various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. In the present study, we analyzed a panel of brain-enriched microRNAs in serums from 2 to 6 year old boys diagnosed with ASD. The hsa-miR-124 level was found significantly elevated in ASD boys than in age and sex-matched healthy controls. In an isolation-reared weanling mouse model, we evidenced elevated mmu-miR-124 level in the serum and the medial prefrontal cortex (mPFC). These mice displayed significant sociability deficits, as well as myelin abnormality in the mPFC, which was partially rescued by expressing the miR-124 sponge in the bilateral mPFC, ubiquitously or specifically in oligodendroglia. In cultured mouse oligodendrocyte precursor cells, introducing a synthetic mmu-miR-124 inhibited the differentiation process through suppressing expression of nuclear receptor subfamily 4 group A member 1 (Nr4a1). Overexpressing Nr4a1 in the bilateral mPFC also corrected the social behavioral deficits and myelin impairments in the isolation-reared mice. This study revealed an unanticipated role of the miR-124/Nr4a1 signaling in regulating early social experience-dependent mPFC myelination, which may serve as a potential therapy target for social neglect or social isolation-related neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , MicroRNAs , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Criança , Pré-Escolar , Humanos , Masculino , Camundongos , MicroRNAs/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Córtex Pré-Frontal/metabolismo
6.
Int J Neuropsychopharmacol ; 25(11): 951-967, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36112386

RESUMO

BACKGROUND: Cooperative defect is 1 of the earliest manifestations of disease patients with Alzheimer disease (AD) exhibit, but the underlying mechanism remains unclear. METHODS: We evaluated the cooperative function of APP/PS1 transgenic AD model mice at ages 2, 5, and 8 months by using a cooperative drinking task. We examined neuropathologic changes in the medial prefrontal cortex (mPFC). Another experiment was designed to observe whether miconazole, which has a repairing effect on myelin sheath, could promote the cooperative ability of APP/PS1 mice in the early AD-like stage. We also investigated the protective effects of miconazole on cultured mouse cortical oligodendrocytes exposed to human amyloid ß peptide (Aß1-42). RESULTS: We observed an age-dependent impairment of cooperative water drinking behavior in APP/PS1 mice. The AD mice with cooperative dysfunction showed decreases in myelin sheath thickness, oligodendrocyte nuclear heterochromatin percentage, and myelin basic protein expression levels in the mPFC. The cooperative ability was significantly improved in APP/PS1 mice treated with miconazole. Miconazole treatment increased oligodendrocyte maturation and myelin sheath thickness without reducing Aß plaque deposition, reactive gliosis, and inflammatory factor levels in the mPFC. Miconazole also protected cultured oligodendrocytes from the toxicity of Aß1-42. CONCLUSIONS: These results demonstrate that mPFC hypomyelination is involved in the cooperative deficits of APP/PS1 mice. Improving myelination through miconazole therapy may offer a potential therapeutic approach for early intervention in AD.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Miconazol/farmacologia , Camundongos Endogâmicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Presenilina-1/genética , Presenilina-1/metabolismo
7.
Food Chem Toxicol ; 168: 113407, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075474

RESUMO

Glucocorticoid (GC) exposure can lead to deterioration of the structure and function of hippocampal neurons and is closely involved in Alzheimer's disease (AD). Amyloid-ß (Aß) overproduction is an important aspect of AD pathogenesis. Our study mainly investigated the mechanism of chronic GC exposure in accelerating Aß production in primary cultured hippocampal neurons from APP/PS1 mice. The results indicated that chronic dexamethasone (DEX, 1 µM) significantly accelerated neuronal damage and Aß accumulation in hippocampal neurons from APP/PS1 mice. Meanwhile, DEX exposure markedly upregulated APP, NCSTN, BACE1 and p-Tau/Tau expression in hippocampal neurons from APP/PS1 mice. Our study also indicated that chronic DEX exposure significantly increased intracellular Ca2+ ([Ca2+]i) levels and the expressions of p-PLC, CN and NFAT1 in hippocampal neurons from APP/PS1 mice. We further found that stabilizing intracellular calcium homeostasis with 2-APB (50 µM) and SKF-96365 (10 µM) significantly alleviated neuronal damage and Aß accumulation in chronic DEX-induced hippocampal neurons from APP/PS1 mice. Additionally, dual luciferase assays showed that NFAT1 upregulated NCSTN transactivation, which was further increased upon DEX treatment. This study suggests that chronic DEX exposure accelerates Aß accumulation by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons from APP/PS1 mice, which may be closely related to the acceleration of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Glucocorticoides , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Cálcio/metabolismo , Dexametasona/toxicidade , Modelos Animais de Doenças , Glucocorticoides/efeitos adversos , Glucocorticoides/toxicidade , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Fatores de Transcrição NFATC/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo
8.
Behav Brain Funct ; 17(1): 11, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920732

RESUMO

BACKGROUND: Brain aging is an important risk factor in many human diseases, such as Alzheimer's disease (AD). The production of excess reactive oxygen species (ROS) mediated by nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and the maturation of inflammatory cytokines caused by activation of the NOD-like receptor protein 1 (NLRP1) inflammasome play central roles in promoting brain aging. However, it is still unclear when and how the neuroinflammation appears in the brain during aging process. METHODS: In this study, we observed the alterations of learning and memory impairments, neuronal damage, NLRP1 inflammasome activation, ROS production and NOX2 expression in the young 6-month-old (6 M) mice, presenile 16 M mice, and older 20 M and 24 M mice. RESULTS: The results indicated that, compared to 6 M mice, the locomotor activity, learning and memory abilities were slightly decreased in 16 M mice, and were significantly decreased in 20 M and 24 M mice, especially in the 24 M mice. The pathological results also showed that there were no significant neuronal damages in 6 M and 16 M mice, while there were obvious neuronal damages in 20 M and 24 M mice, especially in the 24 M group. Consistent with the behavioral and histological changes in the older mice, the activity of ß-galactosidase (ß-gal), the levels of ROS and IL-1ß, and the expressions of NLRP1, ASC, caspase-1, NOX2, p47phox and p22phox were significantly increased in the cortex and hippocampus in the older 20 M and 24 M mice. CONCLUSION: Our study suggested that NLRP1 inflammasome activation may be closely involved in aging-related neuronal damage and may be an important target for preventing brain aging.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento , Proteínas Reguladoras de Apoptose , Inflamassomos , Proteínas NLR , Animais , Aprendizagem , Transtornos da Memória , Camundongos , Doenças Neuroinflamatórias , Neurônios
9.
J Ginseng Res ; 45(6): 665-675, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764721

RESUMO

BACKGROUND: Ginsenoside Rg1 (Rg1), an active ingredient in ginseng, may be a potential agent for the treatment of Alzheimer's disease (AD). However, the protective effect of Rg1 on neurodegeneration in AD and its mechanism of action are still incompletely understood. METHODS: Wild type (WT) and APP/PS1 AD mice, from 6 to 9 months old, were used in the experiment. The open field test (OFT) and Morris water maze (MWM) were used to detect behavioral changes. Neuronal damage was assessed by hematoxylin and eosin (H&E) and Nissl staining. Immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction (q-PCR) were used to examine postsynaptic density 95 (PSD95) expression, amyloid beta (Aß) deposition, Tau and phosphorylated Tau (p-Tau) expression, reactive oxygen species (ROS) production, and NAPDH oxidase 2 (NOX2) expression. RESULTS: Rg1 treatment for 12 weeks significantly ameliorated cognitive impairments and neuronal damage and decreased the p-Tau level, amyloid precursor protein (APP) expression, and Aß generation in APP/PS1 mice. Meanwhile, Rg1 treatment significantly decreased the ROS level and NOX2 expression in the hippocampus and cortex of APP/PS1 mice. CONCLUSIONS: Rg1 alleviates cognitive impairments, neuronal damage, and reduce Aß deposition by inhibiting NOX2 activation in APP/PS1 mice.

10.
Exp Ther Med ; 22(1): 782, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34055081

RESUMO

Lipopolysaccharide (LPS) is a toxic component of cell walls of Gram-negative bacteria that are widely present in gastrointestinal tracts. Increasing evidence showed that LPS plays important roles in the pathogeneses of neurodegenerative disorders, such as Alzheimer's disease (AD). NADPH oxidase s2 (NOX2) is a complex membrane protein that contributes to the production of reactive oxygen species (ROS) in several neurological diseases. The NLRP1 inflammasome can be activated in response to an accumulation of ROS in neurons. However, it is still unknown whether LPS exposure can deteriorate neuronal damage by activating NOX2-NLRP1 inflammasomes. Ginsenoside Rg1 (Rg1) has protective effects on neurons, although whether Rg1 alleviates LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes remains unclear. In the present study, the effect of concentration gradients and different times of LPS exposure on neuronal damage was investigated in HT22 cells, and further observed the effect of Rg1 treatment on NOX2-NLPR1 inflammasome activation, ROS production and neuronal damage in LPS-treated HT22 cells. The results demonstrated that LPS exposure significantly induced NOX2-NLRP1 inflammasome activation, excessive production of ROS, and neuronal damage in HT22 cells. It was also shown that Rg1 treatment significantly decreased NOX2-NLRP1 inflammasome activation and ROS production and alleviated neuronal damage in LPS-induced HT22 cells. The present data suggested that Rg1 has protective effects on LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes in HT22 cells, and Rg1 may be a potential therapeutic approach for delaying neuronal damage in AD.

11.
Int Immunopharmacol ; 82: 106339, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32114413

RESUMO

Aging is closely related to the progress of renal fibrosis, which eventually results in renal dysfunction. Ginsenoside Rg1 (Rg1) has been reported to have an extensive anti-aging effect. However, the role and mechanism of Rg1 in aging-related renal fibrosis remain unclear. The present study aimed to evaluate the protective effect and mechanism of Rg1 in renal fibrosis during kidney aging in a model of SAMP8 mice. Taking SAMR1 mice as the control group, SAMP8 mice were administered Apocynin (50 mg/kg), Tempol (50 mg/kg), or Rg1 (5, 10 mg/kg) intragastrically for 9 weeks as treatment groups. The results showed that the elevated levels of blood urea nitrogen, serum creatinine and senescence-associated ß-galactosidase (ß-Gal) were markedly decreased, the glomerular mesangial proliferation was significantly alleviated and the increased levels of collagen IV and TGF-ß1 were significantly downregulated by Rg1 in SAMP8 mice. In addition, the generation of ROS and the expression of NADHP oxidase 4 (NOX4) in the renal cortex were significantly reduced by Rg1 treatment. The expression levels of NLRP3 inflammasome-related proteins and the inflammation-related cytokine IL-1ß were also inhibited by Rg1 treatment in the SAMP8 mice. These results suggested that Rg1 could delay kidney aging and inhibit aging-related glomerular fibrosis by reducing NOX4-derived ROS generation and downregulating NLRP3 inflammasome expression.

12.
Int Immunopharmacol ; 74: 105721, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31255881

RESUMO

Glucocorticoids (GCs) exposure has deleterious alteration on the structure and function in hippocampal neurons. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in neurological diseases, and NLRP1 inflammasome can be activated in response to oxidative stress. We hypothesize that inhibition of NOX2-mediated NLRP1 inflammasome activation may protect against chronic GCs exposure-induced neuronal injury. In this study, the lentivirus with NLRP1-siRNA was injected into the hippocampus of male mice which were then treated with dexamethasone (DEX, 5 mg/kg) for 28 d. The data indicated that NLRP1-siRNA treatment down-regulated the NLRP1 expression and significantly improved the exploratory behavior and spatial memory deficits in open field tests and Morris water maze which were deteriorated by chronic DEX treatment in mice. Additionally, inhibition of NLRP1 expression significantly alleviated neuronal degeneration and increased MAP2 expression in the hippocampus in mice. Meanwhile, the results showed that DEX exposure increased NOX2, p22phox and p47phox expression in hippocampus tissue in mice. We further examined the effect of tempol (ROS scavenger) and apocynin (NOX inhibitor) treatment on NLRP1 inflammasome activation in chronic DEX-treated hippocampal neurons. The results revealed that the tempol (50 µM) and apocynin (50 µM) treatment significantly decreased generation of ROS, expression of NOX2 and NLRP1-related protein in DEX-treated hippocampal neurons. These data indicate that NOX2-mediated NLRP1 activation involves in chronic GCs exposure-induced neuronal injury and inhibition of NOX2-NLRP1 signaling pathway protects against GCs-induced neuronal damage.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dexametasona/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Exposição Ambiental/efeitos adversos , Hipocampo/patologia , Neurônios/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/etiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Comportamento Animal , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , NADPH Oxidase 2/metabolismo , Neurônios/patologia , Neuroproteção , RNA Interferente Pequeno/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA