Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Radiat Oncol ; 19(1): 39, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509540

RESUMO

BACKGROUND: At present, the implementation of intensity-modulated radiation therapy (IMRT) treatment planning for geometrically complex nasopharyngeal carcinoma (NPC) through manual trial-and-error fashion presents challenges to the improvement of planning efficiency and the obtaining of high-consistency plan quality. This paper aims to propose an automatic IMRT plan generation method through fluence prediction and further plan fine-tuning for patients with NPC and evaluates the planning efficiency and plan quality. METHODS: A total of 38 patients with NPC treated with nine-beam IMRT were enrolled in this study and automatically re-planned with the proposed method. A trained deep learning model was employed to generate static field fluence maps for each patient with 3D computed tomography images and structure contours as input. Automatic IMRT treatment planning was achieved by using its generated dose with slight tightening for further plan fine-tuning. Lastly, the plan quality was compared between automatic plans and clinical plans. RESULTS: The average time for automatic plan generation was less than 4 min, including fluence maps prediction with a python script and automated plan tuning with a C# script. Compared with clinical plans, automatic plans showed better conformity and homogeneity for planning target volumes (PTVs) except for the conformity of PTV-1. Meanwhile, the dosimetric metrics for most organs at risk (OARs) were ameliorated in the automatic plan, especially Dmax of the brainstem and spinal cord, and Dmean of the left and right parotid glands significantly decreased (P < 0.05). CONCLUSION: We have successfully implemented an automatic IMRT plan generation method for patients with NPC. This method shows high planning efficiency and comparable or superior plan quality than clinical plans. The qualitative results before and after the plan fine-tuning indicates that further optimization using dose objectives generated by predicted fluence maps is crucial to obtain high-quality automatic plans.


Assuntos
Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Neoplasias Nasofaríngeas/radioterapia
2.
J Neurooncol ; 167(1): 123-132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38300388

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) guided adaptive radiotherapy (MRgART) has gained increasing attention, showing clinical advantages over conventional radiotherapy. However, there are concerns regarding online target delineation and modification accuracy. In our study, we aimed to investigate the accuracy of brain metastases (BMs) contouring and its impact on dosimetry in 1.5 T MRI-guided online adaptive fractionated stereotactic radiotherapy (FSRT). METHODS: Eighteen patients with 64 BMs were retrospectively evaluated. Pre-treatment 3.0 T MRI scans (gadolinium contrast-enhanced T1w, T1c) and initial 1.5 T MR-Linac scans (non-enhanced online-T1, T2, and FLAIR) were used for gross target volume (GTV) contouring. Five radiation oncologists independently contoured GTVs on pre-treatment T1c and initial online-T1, T2, and FLAIR images. We assessed intra-observer and inter-observer variations and analysed the dosimetry impact through treatment planning based on GTVs generated by online MRI, simulating the current online adaptive radiotherapy practice. RESULTS: The average Dice Similarity Coefficient (DSC) for inter-observer comparison were 0.79, 0.54, 0.59, and 0.64 for pre-treatment T1c, online-T1, T2, and FLAIR, respectively. Inter-observer variations were significantly smaller for the 3.0 T pre-treatment T1c than for the contrast-free online 1.5 T MR scans (P < 0.001). Compared to the T1c contours, the average DSC index of intra-observer contouring was 0.52‒0.55 for online MRIs. For BMs larger than 3 cm3, visible on all image sets, the average DSC indices were 0.69, 0.71 and 0.64 for online-T1, T2, and FLAIR, respectively, compared to the pre-treatment T1c contour. For BMs < 3 cm3, the average visibility rates were 22.3%, 41.3%, and 51.8% for online-T1, T2, and FLAIR, respectively. Simulated adaptive planning showed an average prescription dose coverage of 63.4‒66.9% when evaluated by ground truth planning target volumes (PTVs) generated on pre-treatment T1c, reducing it from over 99% coverage by PTVs generated on online MRIs. CONCLUSIONS: The accuracy of online target contouring was unsatisfactory for the current MRI-guided online adaptive FSRT. Small lesions had poor visibility on 1.5 T non-contrast-enhanced MR-Linac images. Contour inaccuracies caused a one-third drop in prescription dose coverage for the target volume. Future studies should explore the feasibility of contrast agent administration during daily treatment in MRI-guided online adaptive FSRT procedures.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia
3.
Clin Transl Radiat Oncol ; 40: 100602, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36910023

RESUMO

Purpose: To assess the feasibility and potential benefits of online adaptive MR-guided fractionated stereotatic radiotherapy (FSRT) in patients with brain metastases (BMs). Methods and materials: Twenty-eight consecutive patients with BMs were treated with FSRT of 30 Gy in 5 fractions on the 1.5 T MR-Linac. The FSRT fractions employed daily MR scans and the contours were utilized to create each adapted plan. The brain lesions and perilesional edema were delineated on MR images of pre-treatment simulation (Fx0) and all fractions (Fx1, Fx2, Fx3, Fx4 and Fx5) to evaluate the inter-fractional changes. These changes were quantified using absolute/relative volume, Dice similarity coefficient (DSC) and Hausdorff distance (HD) metrics. Planning target volume (PTV) coverage and organ at risk (OAR) constraints were used to compare non-adaptive and adaptive plans. Results: A total of 28 patients with 88 lesions were evaluated, and 23 patients (23/28, 82.1%) had primary lung adenocarcinoma. Significant tumor volume reduction had been found during FSRT compared to Fx0 for all 88 lesions (median -0.75%, -5.33%, -9.32%, -17.96% and -27.73% at Fx1, Fx2, Fx3, Fx4 and Fx5, p < 0.05). There were 47 (47/88, 53.4%) lesions being accompanied by perilesional edema and the inter-fractional changes were significantly different compared to those without perilesional edema (p < 0.001). Patients with multiple lesions (13/28, 46.4%) had more significant inter-fractional tumor changes than those with single lesion (15/28, 53.6%), including tumor volume reduction and anatomical shift (p < 0.001). PTV coverage of non-adaptive plans was below the prescribed coverage in 26/140 fractions (19%), with 12 (9%) failing by more than 10%. All 140 adaptive fractions met prescribed target coverage. The adaptive plans also had lower dose to whole brain than non-adaptive plans (p < 0.001). Conclusions: Significant inter-fractional tumor changes could be found during FSRT in patients with BMs treated on the 1.5 T MR-Linac. Daily MR-guided re-optimization of treatment plans showed dosimetric benefit in patients with perilesional edema or multiple lesions.

4.
Phys Med Biol ; 67(12)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588723

RESUMO

Objective.To develop and validate a graphics processing unit (GPU) based superposition Monte Carlo (SMC) code for efficient and accurate dose calculation in magnetic fields.Approach.A series of mono-energy photons ranging from 25 keV to 7.7 MeV were simulated with EGSnrc in a water phantom to generate particle tracks database. SMC physics was extended with charged particle transport in magnetic fields and subsequently programmed on GPU as gSMC. Optimized simulation scheme was designed by combining variance reduction techniques to relieve the thread divergence issue in general GPU-MC codes and improve the calculation efficiency. The gSMC code's dose calculation accuracy and efficiency were assessed through both phantoms and patient cases.Main results.gSMC accurately calculated the dose in various phantoms for bothB = 0 T andB = 1.5 T, and it matched EGSnrc well with a root mean square error of less than 1.0% for the entire depth dose region. Patient cases validation also showed a high dose agreement with EGSnrc with 3D gamma passing rate (2%/2 mm) large than 97% for all tested tumor sites. Combined with photon splitting and particle track repeating techniques, gSMC resolved the thread divergence issue and showed an efficiency gain of 186-304 relative to EGSnrc with 10 CPU threads.Significance.A GPU-superposition Monte Carlo code called gSMC was developed and validated for dose calculation in magnetic fields. The developed code's high calculation accuracy and efficiency make it suitable for dose calculation tasks in online adaptive radiotherapy with MR-LINAC.


Assuntos
Campos Magnéticos , Planejamento da Radioterapia Assistida por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Front Oncol ; 12: 858076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463359

RESUMO

Purpose: The aim of this study is to evaluate the dose accuracy of bulk relative electron density (rED) approach for application in 1.5 T MR-Linac and assess the reliability of this approach in the case of online adaptive MR-guided radiotherapy for nasopharyngeal carcinoma (NPC) patients. Methods: Ten NPC patients formerly treated on conventional linac were included in this study, with their original planning CT and MRI collected. For each patient, structures such as the targets, organs at risk, bone, and air regions were delineated on the original CT in the Monaco system (v5.40.02). To simulate the online adaptive workflow, firstly all contours were transferred to MRI from the original CT using rigid registration in the Monaco system. Based on the structures, three different types of synthetic CT (sCT) were generated from MRI using the bulk rED assignment approach: the sCTICRU uses the rED values recommended by ICRU46, the sCTtailor uses the patient-specific mean rED values, and the sCTHomogeneity uses homogeneous water equivalent values. The same treatment plan was calculated on the three sCTs and the original CT. Dose calculation accuracy was investigated in terms of gamma analysis, point dose comparison, and dose volume histogram (DVH) parameters. Results: Good agreement of dose distribution was observed between sCTtailor and the original CT, with a gamma passing rate (3%/3 mm) of 97.81% ± 1.06%, higher than that of sCTICRU (94.27% ± 1.48%, p = 0.005) and sCTHomogeneity (96.50% ± 1.02%, p = 0.005). For stricter criteria 1%/1 mm, gamma passing rates for plans on sCTtailor, sCTICRU, and sCTHomogeneity were 86.79% ± 4.31%, 79.81% ± 3.63%, and 77.56% ± 4.64%, respectively. The mean point dose difference in PTVnx between sCTtailor and planning CT was -0.14% ± 1.44%, much lower than that calculated on sCTICRU (-8.77% ± 2.33%) and sCTHomogeneity (1.65% ± 2.57%), all with p < 0.05. The DVH differences for the plan based on sCTtailor were much smaller than sCTICRU and sCTHomogeneity. Conclusions: The bulk rED-assigned sCT by adopting the patient-specific rED values can achieve a clinically acceptable level of dose calculation accuracy in the presence of a 1.5 T magnetic field, making it suitable for online adaptive MR-guided radiotherapy for NPC patients.

6.
Med Phys ; 48(10): 6174-6183, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34387872

RESUMO

PURPOSE: To extend and validate the accuracy and efficiency of a graphics processing unit (GPU)-Monte Carlo dose engine for Elekta Unity 1.5 T Magnetic Resonance-Linear Accelerator (MR-LINAC) online independent dose verification. METHODS: Electron/positron propagation physics in a uniform magnetic field was implemented in a previously developed GPU-Monte Carlo dose engine-gDPM. The dose calculation accuracy in the magnetic field was first evaluated in heterogeneous phantom with EGSnrc. The dose engine was then commissioned to a Unity machine with a virtual two photon-source model and compared with the Monaco treatment planning system. Fifteen patient plans from five tumor sites were included for the quantification of online dose verification accuracy and efficiency. RESULTS: The extended gDPM accurately calculated the dose in a 1.5 T external magnetic field and was well matched with EGSnrc. The relative dose difference along central beam axis was less than 0.5% for the homogeneous region in water-lung phantom. The maximum difference was found at the build-up regions and heterogeneous interfaces, reaching 1.9% and 2.4% for 2 and 6 MeV mono-energy photon beams, respectively. The root mean square errors for depth-dose fall-off region were less than 0.2% for all field sizes and presented a good match between gDPM and Monaco GPUMCD. For in-field profiles, the dose differences were within 1% for cross-plane and in-plane directions for all calculated depths except dmax. For penumbra regions, the distance-to-agreements between two dose profiles were less than 0.1 cm. For patient plan verification, the maximum relative average dose difference was 1.3%. The gamma passing rates with criteria 3% (2 mm) for dose regions above 20% were between 93% and 98%. gDPM can complete the dose calculation for less than 40 s with 5 × 108 photons on a single NVIDIA GTX-1080Ti GPU and achieve a statistical uncertainty of 0.5%-1.1% for all evaluated cases. CONCLUSIONS: A GPU-Monte Carlo package-gDPM was extended and validated for Elekta Unity online plan verification. Its calculation accuracy and efficiency make it suitable for online independent dose verification for MR-LINAC.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica
7.
Technol Cancer Res Treat ; 20: 1533033820985871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33472549

RESUMO

In this study, we assess the dosimetric qualities and usability of planning for 1.5 T MR-Linac based intensity modulated radiotherapy (MRL-IMRT) for various clinical sites in comparison with IMRT plans using a conventional linac. In total of 30 patients with disease sites in the brain, esophagus, lung, rectum and vertebra were re-planned retrospectively for simulated MRL-IMRT using the Elekta Unity dedicated treatment planning system (TPS) Monaco (v5.40.01). Currently, the step-and-shoot (ss) is the only delivery technique for IMRT available on Unity. All patients were treated on an Elekta Versa HDTM with IMRT using the dynamic multileaf collimator (dMLC) technique, and the plans were designed using Monaco v5.11. For comparison, the same dMLC-IMRT plan was recalculated with the same machine and TPS but only changing the technique to step-and-shoot. The dosimetric qualities of the MRL-IMRT plans, to be evaluated by the Dose Volume Histograms (DVH) metrics, Homogeneity Index and Conformality Index, were compared with the clinical plans. The planning usability was measured by the optimization time and the number of Monitor Units (MUs). Comparing MRL-IMRT with conventional linac based plans, all created plans were clinically equivalent to current clinical practice. However, MRL-IMRT plans had higher dose to skin and larger low dose region of normal tissues. Furthermore, MRL-IMRT plans had significantly reduced optimization time by comparing conventional linac based plans. The number of MUs of MRL-IMRT was increased by 23% compared with ss-IMRT, and no difference from dMLC-IMRT. In conclusion, clinically acceptable plans can be achieved with 1.5 T MR-Linac system for multiple tumor sites. Given the differences in machine characteristics, some minor differences in plan quality were found between MR-Linac plans and current clinical practice and this should be considered in clinical practice.


Assuntos
Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Neoplasias/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos
8.
Front Oncol ; 10: 607061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335861

RESUMO

PURPOSE: To investigate the in-air out-of-field electron streaming effect (ESE) for esophageal cancer radiotherapy in the presence of 1.5 T perpendicular magnetic field. METHODS: Ten esophageal cancer patients treated with conventional Linac were retrospectively enrolled into a cohort of this study, with the prescription of 4,400 cGy/20 fx. All cases received IMRT replanning using Elekta Unity MR-Linac specified Monaco system, denoted as primary plan. To visualize the in-air dose outside the body in Monaco system, an auxiliary structure was created by extending the external structure. For each case, another comparable plan with no magnetic field was created using the same planning parameters. The plan was also recalculated by placing a bolus upon the neck and chin area to investigate its shielding effect for ESE. Dosimetric evaluations of the out-of-field neck and chin skin area and statistical analysis for these plans were then performed. RESULTS: Out-of-field ESE was also observed in esophageal cancer treatment planning under 1.5 T magnetic field, while totally absent for plans with no magnetic field. On average, the maximum dose to the neck and chin skin area of the primary plan (657.92 ± 69.07 cGy) was higher than that of plan with no magnetic field (281.78 ± 36.59 cGy, p = 0.005) and plan with bolus (398.43 ± 69.19 cGy, p = 0.007). DVH metrics D1cc (the minimum dose to 1 cc volume) of the neck and chin skin for primary plan was 382.06 ± 44.14 cGy, which can be reduced to 212.42 ± 23.65 cGy by using the 1 cm bolus (with p = 0.005), even lower than the plan without magnetic field (214.45 ± 23.82, p = 0.005). No statistically significant difference of the neck and chin skin dose between the plan with bolus and plan with no magnetic field was observed (all with p > 0.05). CONCLUSION: For MRI guided esophageal cancer radiotherapy, a relatively high out-of-field neck and chin skin doses will be introduced by ESE in the presence of magnetic field. It is therefore recommended to take this into account during the planning phase. Adding bolus could effectively reduce the ESE dose contributions, achieve the shielding effect almost equivalent to the scenario with no magnetic field. Further explorations of measurement verifications for the ESE dose distributions are required.

9.
Phys Med ; 80: 288-296, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33246188

RESUMO

PURPOSE: To validate the feasibility and accuracy of commonly used collapsed cone (CC) dose engine for Elekta Unity 1.5T MR-LINAC online independent dose verification. MATERIALS AND METHODS: The Unity beam model was built and commissioned in RayStation treatment planning system with CC dose engine. Four AAPM TG-119 test plans were created and measured with ArcCHECK phantom for comparison, another thirty patient plans from six tumor sites were also included. The dosimetric criteria for various ROIs and 3D gamma passing rates were quantitatively evaluated, and the effects of magnetic field and dose deposition type on the dose difference between two systems were further analyzed. RESULTS: ArcCHECK based measurement showed a clear magnetic field induced profile shift between CC with both measurement and GPUMCD. For clinical plans, gamma passing rates with criteria (3%, 3 mm) between GPUMCD and CC large than 90% can be achieved for most tumor sites except esophagus and lung cases, the mean dose difference of 3% can be satisfied for most ROIs from all tumor sites. The magnetic field caused a large dose impact on low density areas, the average gamma passing rates were improved from 85.54% to 96.43% and 87.40% to 99.54% for esophagus and lung cases when the magnetic field effect was excluded. CONCLUSIONS: It is feasible to use CC dose engine as a secondary dose calculation tool for Elekta Unity system for most tumor sites, while the accuracy is limited and should be used carefully for low density areas, such as esophagus and lung cases.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Estudos de Viabilidade , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
10.
Front Oncol ; 10: 598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391275

RESUMO

Purpose: To aid in the selection of a suitable combination of irradiation mode and jaw width in helical tomotherapy (HT) for the treatment of nasopharyngeal carcinoma (NPC). Materials and Methods: Twenty patients with NPC who underwent radiotherapy were retrospectively selected. Four plans using a jaw width of 2.5 or 5-cm in dynamic jaw (DJ) or fix jaw (FJ) modes for irradiation were designed (2.5DJ, 2.5FJ, 5.0DJ, and 5.0FJ). The dose parameters of planning target volume (PTV) and organs at risk (OARs) of the plans were compared and analyzed, as well as the beam on time (BOT) and monitor unit (MU). The plans in each group were ranked by scoring the doses received by the OARs and the superity was assessed in combination with the planned BOT and MU. Results: The prescribed dose coverage of PTV met the clinical requirements for all plans in the four groups. The groups using a 2.5-cm jaw width or a DJ mode provided better protection to most OARs, particularly for those at the longitudinal edges of the PTV (P < 0.05). The 2.5DJ group had the best ranking for OAR-dose, followed by the 2.5FJ and 5.0DJ groups with a same score. The BOT and MU of the groups using a 5.0-cm jaw width reduced nearly 45% comparing to those of the 2.5-cm jaw groups. Conclusion: 2.5DJ has the best dose distribution, while 5.0DJ has satisfactory dose distribution and less BOT and MU that related to the leakage dose. Both 2.5DJ or 5DJ were recommended for HT treatment plan for NPC based on the center workload.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA