Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
World J Clin Cases ; 12(25): 5673-5680, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39247737

RESUMO

BACKGROUND: Due to frequent and high-risk sports activities, the elbow joint is susceptible to injury, especially to cartilage tissue, which can cause pain, limited movement and even loss of joint function. AIM: To evaluate magnetic resonance imaging (MRI) multisequence imaging for improving the diagnostic accuracy of adult elbow cartilage injury. METHODS: A total of 60 patients diagnosed with elbow cartilage injury in our hospital from January 2020 to December 2021 were enrolled in this retrospective study. We analyzed the accuracy of conventional MRI sequences (T1-weighted imaging, T2-weighted imaging, proton density weighted imaging, and T2 star weighted image) and Three-Dimensional Coronary Imaging by Spiral Scanning (3D-CISS) in the diagnosis of elbow cartilage injury. Arthroscopy was used as the gold standard to evaluate the diagnostic effect of single and combination sequences in different injury degrees and the consistency with arthroscopy. RESULTS: The diagnostic accuracy of 3D-CISS sequence was 89.34% ± 4.98%, the sensitivity was 90%, and the specificity was 88.33%, which showed the best performance among all sequences (P < 0.05). The combined application of the whole sequence had the highest accuracy in all sequence combinations, the accuracy of mild injury was 91.30%, the accuracy of moderate injury was 96.15%, and the accuracy of severe injury was 93.33% (P < 0.05). Compared with arthroscopy, the combination of all MRI sequences had the highest consistency of 91.67%, and the kappa value reached 0.890 (P < 0.001). CONCLUSION: Combination of 3D-CISS and each sequence had significant advantages in improving MRI diagnostic accuracy of elbow cartilage injuries in adults. Multisequence MRI is recommended to ensure the best diagnosis and treatment.

2.
iScience ; 27(9): 110696, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39280616

RESUMO

As a group of researchers and artists, we have collaborated on a science-art project that converts seismic and hydroacoustic data into immersive digital artworks, revealing the hidden realm of ocean soundscape. We integrated artistic methodologies to produce soundtracks and videos from seismic waveforms recorded in the ocean, which enables the general public to gain a multisensory experience of the scientific data studied by specialists. Through exhibitions in multiple venues, our interdisciplinary approach was well received by diverse audiences, showcasing the potential for creative representations of scientific information.

3.
Bioact Mater ; 41: 627-639, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39280897

RESUMO

Developing an oral in situ-forming hydrogel that targets the inflamed intestine to suppress bleeding ulcers and alleviate intestinal inflammation is crucial for effectively treating ulcerative colitis (UC). Here, inspired by sandcastle worm adhesives, we proposed a water-immiscible coacervate (EMNs-gel) with a programmed coacervate-to-hydrogel transition at inflammatory sites composed of dopa-rich silk fibroin matrix containing embedded inflammation-responsive core-shell nanoparticles. Driven by intestinal peristalsis, the EMNs-gel can be actuated forward and immediately transform into a hydrogel once contacting with the inflamed intestine to yield strong tissue adhesion, resulting from matrix metalloproteinases (MMPs)-triggered release of Fe3+ from embedded nanoparticles and rearrangement of polymer network of EMNs-gel on inflamed intestine surfaces. Extensive in vitro experiments and in vivo UC models confirmed the preferential hydrogelation behavior of EMNs-gel to inflamed intestine surfaces, achieving highly effective hemostasis, and displaying an extended residence time ( > 48 h). This innovative EMNs-gel provides a non-invasive solution that accurately suppresses severe bleeding and improves intestinal homeostasis in UC, showcasing great potential for clinical applications.

4.
Surgery ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168726

RESUMO

BACKGROUND: This study aimed to develop and validate a model to predict the risk of prolonged weaning from mechanical ventilation in patients with abdominal trauma. METHODS: Patients with abdominal trauma were included and were divided into the training cohort and the validation cohort. The model was constructed using predictive factors identified by univariable and multivariable logistic regressions, and was validated by receiver operating characteristic curve, calibration curve, and decision curve analysis. Clinical outcomes were compared between model-stratified risk groups. RESULTS: In total,190 patients were included, with 133 in the training cohort and 57 in the validation cohort. Six predictive factors, the Acute Physiology and Chronic Health Evaluation II score, Injury Severity Score, Glasgow coma scale, total bilirubin, skeletal muscle index, and abdominal fat index, were identified and were included in the model. The model predicting prolonged weaning owned a good discrimination, had an excellent calibration, and exhibited a favorable net benefit within a reasonable range of threshold probabilities. Significant differences were shown in prolonged weaning and clinical outcomes between the high-risk and low-risk groups (P < .05). Multivariable Cox regression analysis showed that patients in the high-risk group had greater risk of 28-day mortality (P < .05). CONCLUSION: This study established a model to predict the risk of prolonged weaning from mechanical ventilation and clinical outcomes in patients with abdominal trauma. Skeletal muscle index was identified as one of independent risk factors of prolonged weaning. The findings offer valuable insights for respiratory management in patients with abdominal trauma.

5.
Nature ; 633(8028): 109-113, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39169191

RESUMO

Crustal accretion at mid-ocean ridges governs the creation and evolution of the oceanic lithosphere. Generally accepted models1-4 of passive mantle upwelling and melting predict notably decreased crustal thickness at a spreading rate of less than 20 mm year-1. We conducted the first, to our knowledge, high-resolution ocean-bottom seismometer (OBS) experiment at the Gakkel Ridge in the Arctic Ocean and imaged the crustal structure of the slowest-spreading ridge on the Earth. Unexpectedly, we find that crustal thickness ranges between 3.3 km and 8.9 km along the ridge axis and it increased from about 4.5 km to about 7.5 km over the past 5 Myr in an across-axis profile. The highly variable crustal thickness and relatively large average value does not align with the prediction of passive mantle upwelling models. Instead, it can be explained by a model of buoyant active mantle flow driven by thermal and compositional density changes owing to melt extraction. The influence of active versus passive upwelling is predicted to increase with decreasing spreading rate. The process of active mantle upwelling is anticipated to be primarily influenced by mantle temperature and composition. This implies that the observed variability in crustal accretion, which includes notably varied crustal thickness, is probably an inherent characteristic of ultraslow-spreading ridges.

6.
ACS Appl Mater Interfaces ; 16(24): 30658-30670, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856560

RESUMO

Noninvasive treatment of inflammatory bowel disease with lower gastrointestinal bleeding is a major clinical challenge. In this study, we designed an orally targeted microsphere based on sunflower pollen microcapsules to localize the site of inflammatory injury and promote hemostasis and tissue repair. Due to the Eudragit and ascorbate palmitate coatings, EL/AP@PS(t+Dex) demonstrates pH- and enzyme-responsive release of loaded drugs and helps to resist the harsh environment of the gastrointestinal tract. Both in vitro and in vivo experiments show the characteristics of inflammation targeting and mucosal adhesion, which reduce the systematic exposure and increase the local drug concentration. In the DSS model, orally administered EL/AP@PS(t+Dex) significantly alleviates hematochezia, inhabits intestinal inflammation, and remarkably promotes the recovery of the intestinal epithelial barrier to reduce the exposure of intestinal microvessels. Furthermore, EL/AP@PS(t+Dex) optimized the composition of intestinal microbiota, which benefits intestinal homeostasis. This finding provides a fundamental solution for the treatment of intestinal bleeding caused by inflammatory bowel disease (IBD).


Assuntos
Helianthus , Doenças Inflamatórias Intestinais , Microesferas , Pólen , Doenças Inflamatórias Intestinais/tratamento farmacológico , Pólen/química , Animais , Helianthus/química , Camundongos , Humanos , Hemostasia/efeitos dos fármacos
7.
BMC Psychiatry ; 24(1): 448, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877421

RESUMO

BACKGROUND: The incidence of Post Stroke Depression (PSD) in the Rehabilitation Stage is high, which can bring serious physical and psychological disorders to patients. However, there is still a lack of targeted tools for screening PSD in the rehabilitation stage. Therefore, the aim of this study was to evaluate the factor structure and reliability of a measurement instrument to screen for PSD in the rehabilitation stage. METHODS: A cross-sectional study was conducted on 780 hospitalized stroke patients who were within the rehabilitation stage from May to August 2020. Exploratory factor analysis (EFA) as well as first- and second-order confirmatory factor analysis (CFA) were performed to evaluate the factor structure of the newly developed Symptom Measurement of Post-Stroke Depression in the Rehabilitation Stage (SMPSD-RS). The reliability and validity of the SMPSD-RS were also verified using several statistical methods. RESULTS: EFA extracted a 24-item, five-factor (cognition, sleep, behavior, emotion, and obsession) model that can clinically explain the symptoms of PSD during the rehabilitation stage. A first-order CFA confirmed the EFA model with good model fit indices, and the second-order CFA further confirmed the five-factor structure model and showed acceptable model fit indices. Acceptable reliability and validity were also achieved by the corresponding indicators. CONCLUSION: The SMPSD-RS was proven to have a stable factor structure and was confirmed to be reliable and valid for assessing PSD symptoms in stroke patients during the rehabilitation stage.


Assuntos
Depressão , Escalas de Graduação Psiquiátrica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Estudos Transversais , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/psicologia , Idoso , Análise Fatorial , Depressão/etiologia , Depressão/diagnóstico , Depressão/psicologia , Escalas de Graduação Psiquiátrica/normas , Psicometria , Adulto
8.
Heliyon ; 10(7): e28264, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689962

RESUMO

Maize is a globally important cereal crop, however, maize leaf disease is one of the most common and devastating diseases that afflict it. Artificial intelligence methods face challenges in identifying and classifying maize leaf diseases due to variations in image quality, similarity among diseases, disease severity, limited dataset availability, and limited interpretability. To address these challenges, we propose a residual-based multi-scale network (MResNet) for classifying multi-type maize leaf diseases from maize images. MResNet consists of two residual subnets with different scales, enabling the model to detect diseases in maize leaf images at different scales. We further utilize a hybrid feature weight optimization method to optimize and fuse the feature mapping weights of two subnets. We validate MResNet on a maize leaf diseases dataset. MResNet achieves 97.45% accuracy. The performance of MResNet surpasses other state-of-the-art methods. Various experiments and two additional datasets confirm the generalization performance of our model. Furthermore, thermodynamic diagram analysis increases the interpretability of the model. This study provides technical support for the disease classification of agricultural plants.

9.
Carbohydr Polym ; 334: 122058, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553243

RESUMO

Global public health is seriously threatened by thrombotic disorders because of their high rates of mortality and disability. Most thrombolytic agents, especially protein-based pharmaceuticals, have a short half-life in circulation, reducing their effectiveness in thrombolysis. The creation of an intelligent drug delivery system that delivers medication precisely and releases it under regulated conditions at nearby thrombus sites is essential for effective thrombolysis. In this article, we present a unique medication delivery system (MCRUA) that selectively targets platelets and releases drugs by stimulation from the thrombus' microenvironment. The thrombolytic enzyme urokinase-type plasminogen-activator (uPA) and the anti-inflammatory medication Aspirin (acetylsalicylic acid, ASA) are both loaded onto pH-sensitive CaCO3/cyclodextrin crosslinking metal-organic frameworks (MC) that make up the MCRUA system. c(RGD) is functionalized on the surface of MC, which is functionalized by RGD to an esterification reaction. Additionally, the thrombus site's acidic microenvironment causes MCRUA to disintegrate to release uPA for thrombolysis and aiding in vessel recanalization. Moreover, cyclodextrin-encapsulated ASA enables the treatment of the inflammatory environment within the thrombus, enhancing the antiplatelet aggregation effects and promoting cooperative thrombolysis therapy. When used for thrombotic disorders, our drug delivery system (MCRUA) promotes thrombolysis, suppresses rethrombosis, and enhances biosafety with fewer hemorrhagic side effects.


Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , Trombose , Humanos , Terapia Trombolítica , Ciclodextrinas/uso terapêutico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Trombose/tratamento farmacológico , Aspirina/farmacologia , Oligopeptídeos
10.
Polymers (Basel) ; 16(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337215

RESUMO

Starches plasticized with glycerol/citric acid/stearic acid and tributyl 2-acetylcitrate (ATBC), respectively, were processed with poly (butylene adipate-Co-terephthalate (PBAT) via extrusion and a film-blown process. All the composite films were determined for morphology, mechanical, thermal stability, crystalline, and optical properties. Results show that the most improved morphology was in the 30% glycerol plasticized PBAT/thermoplastic starch (TPS) composite films, characterized by the smallest and narrowest distribution of TPS particle sizes and a more uniform dispersion of TPS particles. However, the water absorption of PBAT/TPS composite films plasticized with glycerol surpassed that observed with ATBC as a plasticizer. Mechanical properties indicated insufficient plasticization of the starch crystal structure when using 10% ATBC, 20% ATBC, and 20% glycerol as plasticizers, leading to poor compatibility between PBAT and TPS. This resulted in stress concentration points under external forces, adversely affecting the mechanical properties of the composites. All PBAT/TPS composite films exhibited a negative impact on the initial thermal decomposition temperature compared to PBAT. Additionally, the haze value of PBAT/TPS composite films exceeded 96%, while pure PBAT had a haze value of 47.42%. Films plasticized with 10% ATBC, 20% ATBC, and 20% glycerol displayed lower transmittance values in the visible light region. The increased transmittance of films plasticized with 30% glycerol further demonstrated their superior plasticizing effect compared to other PBAT/TPS composite films. This study provides a simple and feasible method for preparing low-cost PBAT composites, and their extensions are expected to further replace general-purpose plastics in daily applications.

11.
Carbohydr Polym ; 327: 121679, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171689

RESUMO

Management of noncompressible torso hemorrhage is an urgent clinical requirement, desiring biomaterials with rapid hemostasis, anti-infection and excellent resilient properties. In this research, we have prepared a highly resilient cryogel with both hemostatic and antibacterial effects by chemical crosslinking and electrostatic interaction. The network structure crosslinked by quaternized chitosan and genipin was interspersed with oxidized bacterial cellulose after lyophilization. The as-prepared cryogel can quickly return to the original volume when soaking in water or blood. The appropriately sized pores in the cryogel help to absorb blood cells and further activate coagulation, while the quaternary ammonium salt groups on quaternized chitosan inhibit bacterial infections. Both cell and animal experiments showed that the cryogel was hypotoxic and could promote the regeneration of wound tissue. This research provides a new pathway for the preparation of double crosslinking cryogels and offers effective and safe biomaterials for the emergent bleeding management of incompressible wounds.


Assuntos
Celulose Oxidada , Quitosana , Hemostáticos , Animais , Criogéis/química , Quitosana/farmacologia , Quitosana/química , Celulose Oxidada/farmacologia , Cicatrização , Hemostáticos/farmacologia , Hemostáticos/química , Hemorragia/tratamento farmacológico , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
12.
Cell Prolif ; 57(1): e13538, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691112

RESUMO

Neutrophil extracellular trap (NET) has been confirmed to be related to gut barrier injury during intestinal ischaemia-reperfusion (II/R). However, the specific molecular regulatory mechanism of NETs in II/R-induced intestinal barrier damage has yet to be fully elucidated. Here, we reported increased NETs infiltration accompanied by elevated inflammatory cytokines, cellular necroptosis and tight junction disruption in the intestine of human II/R patients. Meanwhile, NETs aggravated Caco-2 intestinal epithelial cell necroptosis, impairing the monolayer barrier in vitro. Moreover, Pad4-deficient mice were used further to validate the role of NETs in II/R-induced intestinal injury. In contrast, NET inhibition via Pad4 deficiency alleviated intestinal inflammation, attenuated cellular necroptosis, improved intestinal permeability, and enhanced tight junction protein expression. Notably, NETs prevented FUN14 domain-containing 1 (FUNDC1)-required mitophagy activation in intestinal epithelial cells, and stimulating mitophagy attenuated NET-associated mitochondrial dysfunction, cellular necroptosis, and intestinal damage. Mechanistically, silencing Toll-like receptor 4 (TLR4) or receptor-interacting protein kinase 3 (RIPK3) via shRNA relieved mitophagy limitation, restored mitochondrial function and reduced NET-induced necroptosis in Caco-2 cells, whereas this protective effect was reversed by TLR4 or RIPK3 overexpression. The regulation of TLR4/RIPK3/FUNDC1-required mitophagy by NETs can potentially induce intestinal epithelium necroptosis.


Assuntos
Armadilhas Extracelulares , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Células CACO-2 , Armadilhas Extracelulares/metabolismo , Receptor 4 Toll-Like/metabolismo , Necroptose , Mitofagia , Isquemia , Reperfusão , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
13.
Cell Signal ; 113: 110941, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890686

RESUMO

The mechanism by which neutrophil extracellular traps (NETs) may cause intestinal barrier dysfunction in response to trauma/hemorrhagic shock (T/HS) remains unclear. In this study, the roles and mechanisms of NETs in macrophage polarization were examined to determine whether this process plays a role in tissue damage associated with T/HS. Rat models of T/HS and macrophage polarization were developed and the levels of NETs formation in the intestinal tissue of T/HS rats were assessed. NET formation was inhibited in models of T/HS to examine the effect on intestinal inflammation and barrier injury. The proportions of pro-inflammatory and anti-inflammatory macrophages in the damaged intestinal tissues were measured. Finally, high-throughput sequencing was performed to investigate the underlying mechanisms involved in this process. The study revealed that the level of NETs formation was increased and that inhibition of NETs formation alleviated the intestinal inflammation and barrier injury. Moreover, the number of pro-inflammatory macrophages increased and the number of anti-inflammatory macrophages decreased. RNA sequencing analysis indicated that NETs formation decreased the expression of transforming growth factor-beta receptor 2 (TGFBR2), bioinformatic analyses revealed that TGFBR2 was significantly enriched in the transforming growth factor-beta (TGF-ß) signaling pathway. Verification experiments showed that NETs impeded macrophage differentiation into the anti-inflammatory/M2 phenotype and inhibited TGFBR2 and TGF-ß expression in macrophages. However, treatment with DNase I and overexpression of TGFBR2, and inhibition of TGF-ß promoted and prevented this process, respectively. NETs may regulate the macrophage polarization process by promoting intestinal barrier dysfunction in T/HS rats through the TGFBR2-mediated TGF-ß signaling pathway.


Assuntos
Armadilhas Extracelulares , Choque Hemorrágico , Ratos , Animais , Armadilhas Extracelulares/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Choque Hemorrágico/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Anti-Inflamatórios/metabolismo , Fatores de Crescimento Transformadores/metabolismo
14.
Redox Biol ; 67: 102906, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37812880

RESUMO

Microvascular endothelial damage caused by intestinal ischemia‒reperfusion (II/R) is a primary catalyst for microcirculation dysfunction and enterogenous infection. Previous studies have mainly focused on how neutrophil extracellular traps (NETs) and ferroptosis cause intestinal epithelial injury, and little attention has been given to how NETs, mainly from circulatory neutrophils, affect intestinal endothelial cells during II/R. This study aimed to unravel the mechanisms through which NETs cause intestinal microvascular dysfunction. We first detected heightened local NET infiltration around the intestinal microvasculature, accompanied by increased endothelial cell ferroptosis, resulting in microcirculation dysfunction in both human and animal II/R models. However, the administration of the ferroptosis inhibitor ferrostatin-1 or the inhibition of NETs via neutrophil-specific peptidylarginine deiminase 4 (Pad4) deficiency led to positive outcomes, with reduced intestinal endothelial ferroptosis and microvascular function recovery. Moreover, RNA-seq analysis revealed a significant enrichment of mitophagy- and ferroptosis-related signaling pathways in HUVECs incubated with NETs. Mechanistically, elevated NET formation induced Fundc1 phosphorylation at Tyr18 in intestinal endothelial cells, which led to mitophagy inhibition, mitochondrial quality control imbalance, and excessive mitochondrial ROS generation and lipid peroxidation, resulting in endothelial ferroptosis and microvascular dysfunction. Nevertheless, using the mitophagy activator urolithin A or AAV-Fundc1 transfection could reverse this process and ameliorate microvascular damage. We first demonstrate that increased NETosis could result in intestinal microcirculatory dysfunction and conclude that suppressed NET formation can mitigate intestinal endothelial ferroptosis by improving Fundc1-dependent mitophagy. Targeting NETs could be a promising approach for treating II/R-induced intestinal microcirculatory dysfunction.


Assuntos
Armadilhas Extracelulares , Ferroptose , Animais , Humanos , Armadilhas Extracelulares/metabolismo , Células Endoteliais , Mitofagia , Microcirculação , Neutrófilos/metabolismo
15.
Heliyon ; 9(10): e20124, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37771539

RESUMO

Background: Endoplasmic reticulum (ER) plays a crucial role in the development of organ injury caused by sepsis. Therefore, it is highly important to devise strategies that specially target ER stress for the treatment of sepsis. Previous research has shown that priming chemokines can enhance the therapeutic effects of mesenchymal stem cells (MSCs). In this study, we aimed to investigate the function and mechanism of exosomes derived from MSCs that were pretreated with IL-1ß (IB-exos) in the context of septic ER stress. Methods: Mouse bone MSCs were preconditioned with or without IL-1ß and the supernatant was used for exosome extraction. In vitro sepsis cell mode was induced by treating HUVECs with LPS, while in vivo sepsis model was established through cecal ligation and puncture (CLP) operation in mice. Cell viability, apoptosis, motility, and tube formation were assessed using the EDU proliferation assay, flow cytometry analysis, migration assay, and tube formation assay, respectively. The molecular mechanism was investigated using ELISA, qRT-PCR, Western blot, and immunofluorescence staining. Results: Pretreatment with IL-1ß enhanced the positive impact of MSC-exos on the viability, apoptosis, motility, and tube formation ability of HUVECs. The administration of LPS or CLP increased ER stress response, but this effect was blocked by the treatment of IB-exos. Additionally, IB-exos reversed the inhibitory effects of LPS or CLP on the expression levels of SIRT1 and ERK phosphorylation. Knockdown of SIRT1 counteracted the effects of IB-exos on HUVEC cellular function and ER stress. In a mouse model, the injection of IB-exos mitigated sepsis-induced lung injury by inhibiting ER stress response through the activation of SIRT1. Conclusion: IB-exos have been found to alleviate sepsis-induced lung injury via inhibiting ER stress through the SIRT1/ERK pathway. These findings indicated that IB-exos could potentially be used as a strategy to mitigate lung injury caused by sepsis.

16.
World J Gastrointest Surg ; 15(8): 1652-1662, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37701705

RESUMO

BACKGROUND: Few studies have addressed the question of which drain types are more beneficial for patients with pancreatic trauma (PT). AIM: To investigate whether sustained low negative pressure irrigation (NPI) suction drainage is superior to closed passive gravity (PG) drainage in PT patients. METHODS: PT patients who underwent pancreatic surgery were enrolled consecutively at a referral trauma center from January 2009 to October 2021. The primary outcome was defined as the occurrence of severe complications (Clavien-Dindo grade ≥ Ⅲb). Multivariable logistic regression was used to model the primary outcome, and propensity score matching (PSM) was included in the regression-based sensitivity analysis. RESULTS: In this study, 146 patients underwent initial PG drainage, and 50 underwent initial NPI suction drainage. In the entire cohort, a multivariable logistic regression model showed that the adjusted risk for severe complications was decreased with NPI suction drainage [14/50 (28.0%) vs 66/146 (45.2%); odds ratio (OR), 0.437; 95% confidence interval (CI): 0.203-0.940]. After 1:1 PSM, 44 matched pairs were identified. The proportion of each operative procedure performed for pancreatic injury-related and other intra-abdominal organ injury-related cases was comparable in the matched cohort. NPI suction drainage still showed a lower risk for severe complications [11/44 (25.0%) vs 21/44 (47.7%); OR, 0.365; 95%CI: 0.148-0.901]. A forest plot revealed that NPI suction drainage was associated with a lower risk of Clavien-Dindo severity in most subgroups. CONCLUSION: This study, based on one of the largest PT populations in a single high-volume center, revealed that initial NPI suction drainage could be recommended as a safe and effective alternative for managing complex PT patients.

17.
Natl Sci Rev ; 10(10): nwad176, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37671331

RESUMO

It has long been established that plastic flow in the asthenosphere interacts constantly with the overlying lithosphere and plays a pivotal role in controlling the occurrence of geohazards such as earthquakes and volcanic eruptions. Unfortunately, accurately characterizing the direction and lateral extents of the mantle flow field is notoriously difficult, especially in oceanic areas where deployment of ocean bottom seismometers (OBSs) is expensive and thus rare. In this study, by applying shear wave splitting analyses to a dataset recorded by an OBS array that we deployed between mid-2019 and mid-2020 in the South China Sea (SCS), we show that the dominant mantle flow field has a NNW-SSE orientation, which can be attributed to mantle flow extruded from the Tibetan Plateau by the ongoing Indian-Eurasian collision. In addition, the results suggest that E-W oriented flow fields observed in South China and the Indochina Peninsula do not extend to the central SCS.

18.
Adv Mater ; 35(40): e2302863, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392013

RESUMO

Organic memory has attracted tremendous attention for next-generation electronic elements for the molecules' striking ease of structural design. However, due to them being hardly controllable and their low ion transport, it is always essential and challenge to effectively control their random migration, pathway, and duration. There are very few effective strategies, and specific platforms with a view to molecules with specific coordination-groups-regulating ions have been rarely reported. In this work, as a generalized rational design strategy, the well-known tetracyanoquinodimethane (TCNQ) is introduced with multiple coordination groups and small plane structure into a stable polymers framework to modulate Ag migration and then achieve high-performance devices with ideal productivity, low operation voltage and power, stable switching cycles, and state retention. Raman mapping demonstrates that the migrated Ag can specially coordinate with the embedded TCNQ molecules. Notably, the TCNQ molecule distribution can be modulated inside the polymer framework and regulate the memristive behaviors through controlling the formed Ag conductive filaments (CFs) as demonstrated by Raman mapping, in situ conductive atomic force microscopy (C-AFM), X-ray diffraction (XRD) and depth-profiling X-ray photoelectron spectroscopy (XPS). Thus the controllable molecule-mediated Ag movements show its potential in rationally designing high-performance devices and versatile functions and is enlightening in constructing memristors with molecule-mediated ion movements.

19.
Front Nutr ; 10: 1085124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324740

RESUMO

Background: The objective of this study was to explore whether longitudinal changes in skeletal muscle mass, from hospital admission to 3 weeks post-trauma, are associated with poor prognosis and nutritional intake in acutely hospitalized patients with abdominal trauma. Methods: A single-center retrospective observational review was conducted on 103 patients with abdominal trauma admitted to the Affiliated Jinling Hospital, Medical School of Nanjing University between January 2010 and April 2020. Skeletal muscle mass was assessed by abdominal computed tomography (CT) performed within 14 days before surgery and on post-trauma days 1-3 (week 0), 7-10 (week 1), 14-17 (week 2), and 21-24 (week 3). The skeletal muscle index (SMI) at L3, change in SMI per day (ΔSMI/day), and percent change in SMI per day (ΔSMI/day [%]) were calculated. The receiver-operating characteristic (ROC) curve was used to evaluate the discriminatory performance of ΔSMI/day (%) for mortality. Linear correlation analysis was used to evaluate the associations between ΔSMI/day (%) and daily caloric or protein intake. Results: Among the included patients, there were 91 males and 12 females (mean age ± standard deviation 43.74 ± 15.53 years). ΔSMI4-1/d (%) had a ROC-area under the curve of 0.747 (p = 0.048) and a cut-off value of -0.032 for overall mortality. There were significant positive correlations between ΔSMI4-1/d (%) and daily caloric intake and protein intake (Y = 0.0007501*X - 1.397, R2 = 0.282, R = 0.531, p < 0.001; Y = 0.008183*X - 0.9228, R2 = 0.194, R = 0.440, p < 0.001). Δ SMI/day (%) was positively correlated with daily caloric intake ≥80% of resting energy expenditure in weeks 2, 3, and 1-3 post-trauma and with protein intake >1.2 g/kg/d in weeks 3 and 1-3 post-trauma. Conclusion: Loss of skeletal muscle mass is associated with poor prognosis and nutritional intake in patients admitted to hospital with abdominal trauma.

20.
Cell Signal ; 109: 110776, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331414

RESUMO

Circular RNAs (circRNAs), according to a growing body of research, are thought to be important in the initiation and development of a number of cancers. However, more research is needed to fully understand how circRNAs work at the molecular level in triple-negative breast cancer (TNBC). RNA sequencing was conducted on four sets of TNBC samples and their corresponding adjacent noncancerous tissues (ANTs). The circSNX25 expression was assessed using quantitative real-time PCR in TNBC tissues and cells. Several in vitro and in vivo experiments were conducted in order to examine the function of circSNX25 in TNBC carcinogenesis. Through luciferase reporter and chromatin immunoprecipitation (ChIP) assays, we also investigated the potential regulation of circSNX25 biogenesis by specificity protein 1 (SP1). To further validate the relationship between circSNX25 and COPI coat complex subunit beta 1 (COPB1) in TNBC, we conducted circRNA pull-down and RNA immunoprecipitation (RIP) assays using the MS2/MS2-CP system. Online databases were analyzed to examine the clinical implications and prognostic value of COPB1 in TNBC. A higher circSNX25 expression levels were observed in tissues and cells of TNBC. Silencing circSNX25 notably inhibited TNBC cell proliferation, triggered apoptosis, and hindered tumor growth in vivo. Conversely, upregulation of circSNX25 had the opposite effects. Mechanistically, circSNX25 was found to physically interact with COPB1. Importantly, we identified that SP1 may enhance circSNX25 biogenesis. COPB1 levels were markedly higher in TNBC cells. Analysis of online databases revealed that TNBC patients with elevated COPB1 levels had a poorer prognosis. Our findings demonstrate that SP1-mediated circSNX25 promotes TNBC carcinogenesis and development. CircSNX25 may therefore serve as both a diagnostic and therapeutic biomarker for TNBC patients.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , RNA Circular/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , RNA/genética , Proliferação de Células/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Movimento Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA